Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Profiling of Conceptual Systems Based on a Complex of Methods of Psychosemantics and Machine Learning

  • INFORMATION SYSTEMS
  • Published:
Automatic Documentation and Mathematical Linguistics Aims and scope

Abstract

A new approach to profiling users of social internet services and the concept of recommender systems based on this approach are presented. The proposed approach is based on the integration of the methods and models of machine learning with the methods of psychosemantics and visual analytics, which are implemented as software package that includes three client–server systems for collecting, processing, analyzing and visualizing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Knoke, D., Emerging trends in social network analysis of terrorism and counterterrorism, Emerging Trends in the Social and Behavioral Sciences, Scott, R.A. and Kosslyn, S.M., Eds., Wiley, 2015. https://doi.org/10.1002/9781118900772.etrds0106

    Book  Google Scholar 

  2. Teutsch, D. and Niemann, J., Social network sites as a threat to users’ self-determination and security: A framing analysis of German newspapers, J. Int. Commun., 2016, vol. 22, no. 1, pp. 22–41. https://doi.org/10.1080/13216597.2015.1111841

    Article  Google Scholar 

  3. Borah, P., Political Facebook use: Campaign strategies used in 2008 and 2012 presidential elections, J. Inf. Technol. Politics, 2016, vol. 13, no. 4, pp. 326–338. https://doi.org/10.1080/19331681.2016.1163519

    Article  Google Scholar 

  4. Fernández, J., Llopis, F., Gutiérrez, Yo., Martínez-Barco, P., and Díez, Á., Opinion mining in social networks versus electoral polls, RANLP 2017—Recent Advances in Natural Language Processing Meet Deep Learning, Shoumen, Bulgaria: Incoma, 2017, p. 231237. https://doi.org/10.26615/978-954-452-049-6_032

    Book  Google Scholar 

  5. Gustafsson, N., The subtle nature of Facebook politics: Swedish social network site users and political participation, New Media Soc., 2012, vol. 14, no. 7, pp. 1111–1127. https://doi.org/10.1177/1461444812439551

    Article  Google Scholar 

  6. Heiss, R. and Matthes, J., Who ‘likes’ populists? Characteristics of adolescents following right-wing populist actors on Facebook, Inf., Commun. Soc., 2017, vol. 20, no. 9, pp. 1408–1424. https://doi.org/10.1080/1369118x.2017.1328524

    Article  Google Scholar 

  7. Ko, E., Chun, E., Song, S., and Mattila, P., Exploring SNS as a consumer tool for retail therapy: Explicating semantic networks of “shopping makes me happy (unhappy)” as a new product development method, J. Global Scholars Marketing Sci., 2015, vol. 25, no. 1, pp. 37–48. https://doi.org/10.1080/21639159.2014.984891

    Article  Google Scholar 

  8. Gil de Zúñiga, H., Diehl, T., Huber, B., and Liu, J., Personality traits and social media use in 20 countries: How personality relates to frequency of social media use, social media news use, and social media use for social interaction, Cyberpsychology, Behav., Soc. Networking, 2017, vol. 20, no. 9, pp. 540–552. https://doi.org/10.1089/cyber.2017.0295

    Article  Google Scholar 

  9. Gena, C., Methods and techniques for the evaluation of user-adaptive systems, Knowl. Eng. Rev., 2005, vol. 20, no. 1, pp. 1–37. https://doi.org/10.1017/s0269888905000299

    Article  Google Scholar 

  10. Parmar, M.J. and Angelides, M.C., Multimedia information filtering, Encyclopaedia of Information Science and Technology, Khosrow-Pour, M., Ed., Hershey, Pa.: Idea Group Reference, 2005, pp. 2063–2067.

  11. Elizarov, A.M., Zhizhchenko, A.B., Zhil’tsov, N.G., Kirillovich, A.V., and Lipachev, E.K., Mathematical knowledge ontologies and recommender systems for collections of documents in physics and mathematics, Dokl. Math., 2016, vol. 93, no. 2, pp. 231–233. https://doi.org/10.1134/s1064562416020174

    Article  MathSciNet  MATH  Google Scholar 

  12. Filipyev, A.V., Item-based recommender system with statistical learning for unauthorized customers, Program. Prod. Sist., 2019, vol. 32, no. 2, p. 221226. https://doi.org/10.15827/0236-235X.126.221-226

    Article  Google Scholar 

  13. Langer, R., Towards a constructivist communication theory? Report from Germany, Nord. Inf., 1999, nos. 1–2, pp. 75–86.

  14. Pavilenis, R.I., Problema smysla. Sovremennyi logiko-filosofskii analiz yazyka (Meaning Problem: Modern Logico-Philosophical Analysis of Language), Moscow: Mysl’, 1983.

  15. Ryabinin, K., Chumakov, R., Belousov, K., and Kolesnik, M., Ontology-driven visual analytics platform for semantic data mining and fuzzy classification, Frontiers in Artificial Intelligence and Applications, IOS Press, 2022, vol. 358, p. 17. https://doi.org/10.3233/faia220363

    Article  Google Scholar 

  16. Sousa, T.B., Dataflow programming concept, languages and applications, 11th Doctoral Symposium in Informatics Engineering (DSIE’16), FEUP, 2012, vol. 130.

  17. Pinho, D., Aguiar, A., and Amaral, V., What about the usability in low-code platforms? A systematic literature review, J. Comput. Languages, 2023, vol. 74, p. 101185. https://doi.org/10.1016/j.cola.2022.101185

    Article  Google Scholar 

  18. Ryabinin, K., Chuprina, S., and Labutin, I., Tackling IoT interoperability problems with ontology-driven smart approach, Science and Global Challenges of the 21st Century—Science and Technology. Perm Forum 2021, Lecture Notes in Networks and Systems, vol. 342, Cham: Springer, 2022, pp. 77–91. https://doi.org/10.1007/978-3-030-89477-1_9

  19. Chumakov, R., Ryabinin, K., Belousov, K., and Duan, J., Creative Map Studio: A platform for visual analytics of mental maps, Sci. Visualization, 2021, vol. 13, no. 2, pp. 79–93. https://doi.org/10.26583/sv.13.2.06

    Article  Google Scholar 

  20. Belousov, K.I., Baranov, D.A., Zelyanskaya, N.L., Ponomarev, N.F., and Ryabinin, K.V., Cognitive-information modeling of social reality: Concepts, events, priorities, Vestn. Tomsk. Gos. Univ. Filologiya, 2021, no. 72, pp. 5–26. https://doi.org/10.17223/19986645/72/1

  21. Korobov, M., Morphological analyzer and generator for Russian and Ukrainian languages, Analysis of Images, Soceial Networks and Texts. AIST 2015, Khachay, M., Konstantinova, N., Panchenko, A., Ignatov, D., and Labunets, V., Eds., Communications in Computer and Information Science, vol. 542, Cham: Springer, 2015, pp. 320–332. https://doi.org/10.1007/978-3-319-26123-2_31

  22. Řehůřek, R. and Sojka, P., Software framework for topic modelling with large corpora, Proc. LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, 2010, pp. 46–50. http://www.lrec-conf.org/proceedings/lrec2010/workshops/W10.pdf.

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., and Dean, J., Distributed representations of words and phrases and their compositionality, Advances in Neural Information Processing Systems, Burges, C.J., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K.Q., Eds., Curran Associates, 2013, vol. 26. https://proceedings.neurips.cc/paper_files/paper/2013/ file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

  24. Belousov, K.I., Obukhova, I.A., and Labutin, I.A., Word2Vec- and semantic graph modeling of emoticons and emoji use in internet communication texts, Vopr. Kognitivnoy Lingvistiki, 2023, no. 2, pp. 47–62. https://doi.org/10.20916/1812-3228-2023-2-47-62

  25. Lambiotte, R., Delvenne, J.-Ch., and Barahona, M., Laplacian dynamics and multiscale modular structure in networks, 2008. https://doi.org/10.48550/arXiv.0812.1770

  26. Belousov, K.I., Strategies for structuring the thematic space of a text, Vestn. Permsk. Univ., 2014, no. 4, pp. 15–25.

  27. Cufoglu, A., User profiling—A short review, Int. J. Comput. Appl., 2014, vol. 108, no. 3, pp. 1–9. https://doi.org/10.5120/18888-0179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. I. Belousov, R. K. Bashirov, N. L. Zelianskaia, I. A. Labutin, K. V. Ryabinin or R. V. Chumakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

“O God, I could be bounded in a nutshell and count myself a king of infinite space, were it not that I have bad dreams.”

William Shakespeare1

Translated by L. Solovyova

1Shakespeare W. Hamlet, Prince of Denmark, Tragedies, Comedies, Sonnets: Collectible Illustrated Edition, Moscow: Algoritm, 2018.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousov, K.I., Bashirov, R.K., Zelianskaia, N.L. et al. Profiling of Conceptual Systems Based on a Complex of Methods of Psychosemantics and Machine Learning. Autom. Doc. Math. Linguist. 57, 193–205 (2023). https://doi.org/10.3103/S0005105523040027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0005105523040027

Keywords:

Navigation