Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Relevance of the Minimum Degree to Dynamic Fluctuation in Strongly Heterogeneous Networks

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The fluctuation of dynamic variables in complex networks is known to depend on the dimension and the heterogeneity of the substrate networks. Previous studies, however, have reported inconsistent results for the scaling behavior of fluctuation in strongly heterogeneous networks. To understand the origin of this conflict, we study the dynamic fluctuation on scale-free networks with a common small degree exponent but different mean degrees and minimum degrees constructed by using the configuration model and the static model. It turns out that the global fluctuation of dynamic variables diverges algebraically and logarithmically with the system size when the minimum degree is one and two, respectively. Such different global fluctuations are traced back to different, linear and sub-linear, growth of local fluctuation at individual nodes with their degrees, implying a crucial role of degree-one nodes in controlling correlation between distinct hubs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).

    Article  ADS  Google Scholar 

  2. R. Albert and A-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008).

    Book  MATH  Google Scholar 

  4. A-L. Barabási and H. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).

    Book  MATH  Google Scholar 

  5. D. Ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems (Cambridge University Press, 2000).

    Book  MATH  Google Scholar 

  6. S. Dorogovtsev, A. Goltsev and J. Mendes, Rev. Mod. Phys. 80, 1275 (2008).

    Article  ADS  Google Scholar 

  7. E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).

    Article  Google Scholar 

  8. G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai and P. A. Rikvold, Science 299, 677 (2003).

    Article  ADS  Google Scholar 

  9. R. Albert, I. Albert and G. L. Nakarado, Phys. Rev. E 69, 025103 (2004).

    Article  ADS  Google Scholar 

  10. M. Rohden, A. Sorge, M. Timme and D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012).

    Article  ADS  Google Scholar 

  11. A. E. Motter, S. A. Myers, M. Anghel and T. Nishikawa, Nat. Phys. 9, 191 (2013).

    Article  Google Scholar 

  12. J. Gao, B. Barzel and A-L. Barabási, Nature 530, 307 (2016).

    Article  ADS  Google Scholar 

  13. F. Family, J. Phys. A:Math. Theor. 19, L441 (1986).

    Article  ADS  Google Scholar 

  14. A-L. Barabási and R. Albert, Science 286, 509 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. L. Pastore y Piontti, P. A. Macri and L. A. Braunstein, Phys. Rev. E 76, 046117 (2007).

    Article  ADS  Google Scholar 

  16. C. E. La Rocca, L. A. Braunstein and P. A. Macri, Phys. Rev. E 77, 046120 (2008).

    Article  ADS  Google Scholar 

  17. D. Torres, M. A. D. Muro, C. E. L. Rocca and L. A. Braunstein, EPL (Europhysics Letters) 110, 66001 (2015).

    Article  ADS  Google Scholar 

  18. H-H. Yoo and D-S. Lee, Phys. Rev. E 93, 032319 (2016).

    Article  ADS  Google Scholar 

  19. M. Molloy and B. Reed, Random Structures & Algorithms 6, 161 (1995).

    Article  MathSciNet  Google Scholar 

  20. M. Catanzaro, M. Bogu˜ná and R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005).

    Article  ADS  Google Scholar 

  21. K-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).

    Article  Google Scholar 

  22. A. N. Samukhin, S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 77, 036115 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Park and M. E. J. Newman, Phys. Rev. E 68, 026112 (2003).

    Article  ADS  Google Scholar 

  24. J-S. Lee, K-I. Goh, B. Kahng and D. Kim, Eur. Phys. J. B 49, 231 (2006).

    Article  ADS  Google Scholar 

  25. D-S. Lee, K-I. Goh, B. Kahng and D. Kim, Nucl. Phys. B 696, 351 (2004).

    Article  ADS  Google Scholar 

  26. S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. Lond. A 381, 17 (1982).

    Article  ADS  Google Scholar 

  27. S. Hwang, D-S. Lee and B. Kahng, Phys. Rev. E 90, 043303 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-S. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, HH., Lee, DS. Relevance of the Minimum Degree to Dynamic Fluctuation in Strongly Heterogeneous Networks. J. Korean Phys. Soc. 72, 748–754 (2018). https://doi.org/10.3938/jkps.72.748

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.748

Keywords

Navigation