Abstract
Orientation selectivity is a remarkable feature of the neurons located in the primary visual cortex. Provided that the visual neurons acquire orientation selectivity through activity-dependent Hebbian learning, the development process could be understood as a kind of symmetry-breaking phenomenon in the view of physics. This paper examines the key mechanisms of the orientation selectivity development process. Be found that at least two different mechanisms, which lead to the development of orientation selectivity by breaking the radial symmetry in receptive fields. The first is a simultaneous symmetry-breaking mechanism occurring based on the competition between neighboring neurons, and the second is a spontaneous one occurring based on the nonlinearity in interactions. Only the second mechanism leads to the formation of a columnar pattern whose characteristics is in accord with those observed in an animal experiment.
Similar content being viewed by others
References
D. H. Hubbel and T. N. Wiesel, J. Physiol. 160, 106 (1962).
T. Kohonen, Self-organization and associative memory (Springer-Verlag, Berlin, 1984).
E. Erwin, K. Obermayer and K. Schulten, Neural Comput. 7, 415 (1995).
N. V. Swindale, Network: Comput. Neural Syst. 7, 161 (1996).
M. W. Cho and S. Kim, Phys. Rev. Lett. 92, 18101 (2004).
R. Durbin and G. Mitchison, Nature 343, 341 (1990).
K. Obermayer, G. G. Blasdel and K. Schulten, Phys. Rev. A 45, 7568 (1992).
M. W. Cho and S. Kim, Phys. Rev. Lett. 94, 68701 (2005).
J. Goldstone, Il Nuovo Cimento 19, 154 (1961).
W. A. Bardeen, C. T. Hill and M. Linder, Phys. Rev. D 41, 1647 (1990).
F. Hoffsümmer, F. Wolf, T. Geisel, S. Löwel and K. Schmidt, in Proceedings of the International Conference on Article Neural networks (Paris, 1995), vol. I, p. 535.
O. Scherf, K. Pawelzik, F.Wolf and T. Geisel, Phys. Rev. E 59, 6977 (1999).
G. J. Goodhill and A. Cimoneriu, Networks: Comput. Neural Syst. 11, 153 (2000).
S. Tanaka, in Theory of self-organization of cortical maps, edited by D. S. Touretzky (Morgan kaufmann, San Mateo, 1989), p. 451.
J. D. Cowan and A. E. Fiedman, Adv. Neural Inform. Process. Syst. 3, 26 (1991).
F. Wolf and T. Geisel, Nature 395, 73 (1998).
J. M. Kosterlitz and D. J. Thousless, J. Phys. C 6, 1181 (1973).
K. D. Miller, J. B. Keller and M. P. Stryker, Science 245, 605 (1989).
K. D. Miller, J. Neurosci. 14, 409 (1994).
K. D. Miller, Neuro. Report. 3, 73 (1992).
P. Dayan and L. F. Abbott, Theoretical Neuroscience (The MIT Press, London, 2001).
M. W. Cho and M. Y. Choi, Neural Networks 31, 46 (2012).
S. Paik and D. L. Ringach, Nature Neurosci. 14, 919 (2011).
M. W. Cho and M. Y. Choi, J. Korean Phys. Soc. 55, 2532 (2009).
H. Markram, J. Lübke, M. Frotscher and B. Sakmann, Sicence 275, 213 (1997).
G.-Q. Bi and M.-M. Poo, J. Neurosci. 18, 10464 (1998).
L. F. Abbott and S. B. Nelson, Nat. Neurosci. 3, 1178 (2000).
S. Song, K. D. Miller and L. F. Abbott, Nat. Neurosci. 3, 919 (2000).
M. W. Cho and M. Y. Choi, J. Korean Phys. Soc. 64, 1213 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cho, M.W., Chun, M.Y. Two symmetry-breaking mechanisms for the development of orientation selectivity in a neural system. Journal of the Korean Physical Society 67, 1661–1666 (2015). https://doi.org/10.3938/jkps.67.1661
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3938/jkps.67.1661