Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Two symmetry-breaking mechanisms for the development of orientation selectivity in a neural system

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Orientation selectivity is a remarkable feature of the neurons located in the primary visual cortex. Provided that the visual neurons acquire orientation selectivity through activity-dependent Hebbian learning, the development process could be understood as a kind of symmetry-breaking phenomenon in the view of physics. This paper examines the key mechanisms of the orientation selectivity development process. Be found that at least two different mechanisms, which lead to the development of orientation selectivity by breaking the radial symmetry in receptive fields. The first is a simultaneous symmetry-breaking mechanism occurring based on the competition between neighboring neurons, and the second is a spontaneous one occurring based on the nonlinearity in interactions. Only the second mechanism leads to the formation of a columnar pattern whose characteristics is in accord with those observed in an animal experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Hubbel and T. N. Wiesel, J. Physiol. 160, 106 (1962).

    Article  Google Scholar 

  2. T. Kohonen, Self-organization and associative memory (Springer-Verlag, Berlin, 1984).

    MATH  Google Scholar 

  3. E. Erwin, K. Obermayer and K. Schulten, Neural Comput. 7, 415 (1995).

    Article  Google Scholar 

  4. N. V. Swindale, Network: Comput. Neural Syst. 7, 161 (1996).

    Article  MATH  Google Scholar 

  5. M. W. Cho and S. Kim, Phys. Rev. Lett. 92, 18101 (2004).

    Article  ADS  Google Scholar 

  6. R. Durbin and G. Mitchison, Nature 343, 341 (1990).

    Article  Google Scholar 

  7. K. Obermayer, G. G. Blasdel and K. Schulten, Phys. Rev. A 45, 7568 (1992).

    Article  ADS  Google Scholar 

  8. M. W. Cho and S. Kim, Phys. Rev. Lett. 94, 68701 (2005).

    Article  ADS  Google Scholar 

  9. J. Goldstone, Il Nuovo Cimento 19, 154 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. A. Bardeen, C. T. Hill and M. Linder, Phys. Rev. D 41, 1647 (1990).

    Article  ADS  Google Scholar 

  11. F. Hoffsümmer, F. Wolf, T. Geisel, S. Löwel and K. Schmidt, in Proceedings of the International Conference on Article Neural networks (Paris, 1995), vol. I, p. 535.

    Google Scholar 

  12. O. Scherf, K. Pawelzik, F.Wolf and T. Geisel, Phys. Rev. E 59, 6977 (1999).

    Article  ADS  Google Scholar 

  13. G. J. Goodhill and A. Cimoneriu, Networks: Comput. Neural Syst. 11, 153 (2000).

    Article  MATH  Google Scholar 

  14. S. Tanaka, in Theory of self-organization of cortical maps, edited by D. S. Touretzky (Morgan kaufmann, San Mateo, 1989), p. 451.

  15. J. D. Cowan and A. E. Fiedman, Adv. Neural Inform. Process. Syst. 3, 26 (1991).

    Google Scholar 

  16. F. Wolf and T. Geisel, Nature 395, 73 (1998).

    Article  ADS  Google Scholar 

  17. J. M. Kosterlitz and D. J. Thousless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  18. K. D. Miller, J. B. Keller and M. P. Stryker, Science 245, 605 (1989).

    Article  ADS  Google Scholar 

  19. K. D. Miller, J. Neurosci. 14, 409 (1994).

    Google Scholar 

  20. K. D. Miller, Neuro. Report. 3, 73 (1992).

    Google Scholar 

  21. P. Dayan and L. F. Abbott, Theoretical Neuroscience (The MIT Press, London, 2001).

    MATH  Google Scholar 

  22. M. W. Cho and M. Y. Choi, Neural Networks 31, 46 (2012).

    Article  Google Scholar 

  23. S. Paik and D. L. Ringach, Nature Neurosci. 14, 919 (2011).

    Article  Google Scholar 

  24. M. W. Cho and M. Y. Choi, J. Korean Phys. Soc. 55, 2532 (2009).

    Article  ADS  Google Scholar 

  25. H. Markram, J. Lübke, M. Frotscher and B. Sakmann, Sicence 275, 213 (1997).

    Article  Google Scholar 

  26. G.-Q. Bi and M.-M. Poo, J. Neurosci. 18, 10464 (1998).

    Google Scholar 

  27. L. F. Abbott and S. B. Nelson, Nat. Neurosci. 3, 1178 (2000).

    Article  Google Scholar 

  28. S. Song, K. D. Miller and L. F. Abbott, Nat. Neurosci. 3, 919 (2000).

    Article  Google Scholar 

  29. M. W. Cho and M. Y. Choi, J. Korean Phys. Soc. 64, 1213 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Young Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, M.W., Chun, M.Y. Two symmetry-breaking mechanisms for the development of orientation selectivity in a neural system. Journal of the Korean Physical Society 67, 1661–1666 (2015). https://doi.org/10.3938/jkps.67.1661

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1661

Keywords

Navigation