Abstract
Executive control requires controlling the initiation of movements, judging the consequences of actions, and adjusting performance accordingly. We have investigated the role of different areas in the frontal lobe in executive control expressed by macaque monkeys performing a saccade stop signal task. Certain neurons in the frontal eye field respond to visual stimuli, and others control the production of saccadic eye movements. Neurons in the supplementary eye field do not control directly the initiation of saccades but, instead, signal the production of errors, the anticipation and delivery of reinforcement, and the presence of response conflict. Neurons in the anterior cingulate cortex signal the production of errors and the anticipation and delivery of reinforcement, but not the presence of response conflict. Intracranial local field potentials in the anterior cingulate cortex of monkeys indicate that these medial frontal signals can contribute to event-related potentials related to performance monitoring. Electrical stimulation of the supplementary eye field improves performance in the task by elevating saccade latency. An interactive race model shows how interacting units produce behavior that can be described as the outcome of a race between independent processes and how conflict between gaze-holding and gaze-shifting neurons can be used to adjust performance.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Amador, N., Schlag-Rey, M., & Schlag, J. (2000). Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. Journal of Neurophysiology, 84, 2166–2170.
Amador, N., Schlag-Rey, M., & Schlag, J. (2004). Primate antisaccade: II. Supplementary eye field neuronal activity predicts correct performance. Journal of Neurophysiology, 91, 1672–1689.
Amiez, C., Joseph, J. P., & Procyk, E. (2006). Reward encoding in the monkey anterior cingulate cortex. Cerebral Cortex, 16, 1040–1055.
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.
Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. Journal of Neuroscience, 14, 4467–4480.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. C. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.
Boucher, L., Logan, G. D., Palmeri, T. J., & Schall, J. D. (2006). Modeling trial history of saccade countermanding (Online Program No. 48.8, Abstract Viewer and Itinerary Planner). Washington, DC: Society for Neuroscience Abstracts.
Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114, 376–397.
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825–836.
Brown, J. W., & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.
Bruce, C. J., & Goldberg, M. E. (1985). Primate frontal eye fields: I. Single neurons discharging before saccades. Journal of Neurophysiology, 53, 603–635.
Bruce, C. J., Goldberg, M. E., Bushnell, C., & Stanton, G. B. (1985). Primate frontal eye fields: II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology, 54, 714–734.
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.
Carpenter, R. H. S., & Williams, M. L. L. (1995). Neural computation of log likelihood in the control of saccadic eye movements. Nature, 377, 59–62.
Cavina-Pratesi, C., Bricolo, E., Prior, M., & Marzi, C. A. (2001). Redundancy gain in the stop-signal paradigm: Implications for the locus of coactivation in simple reaction time. Journal of Experimental Psychology: Human Perception & Performance, 27, 932–941.
Chen, L. L., & Wise, S. P. (1995). Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. Journal of Neurophysiology, 73, 1101–1121.
Curtis, C. E., Cole, M. W., Rao, V. Y., & D’Esposito, M. (2005). Canceling planned action: An fMRI study of countermanding saccades. Cerebral Cortex, 15, 1281–1289.
Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25, 11730–11737.
Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303–305.
Dorris, M. C., & Munoz, D. P. (1998). Saccadic probability influences motor preparation signals and time to saccadic initiation. Journal of Neuroscience, 18, 7015–7026.
Durstewitz, D. (2003). Self-organizing neural integrator predicts inreward times through climbing activity. Journal of Neuroscience, 23, 5342–5353.
Emeric, E. E., Brown, J. W., Boucher, L., Carpenter, R. H. S., Hanes, D. P., Harris, R., et al. (2007). Influence of history on countermanding performance in humans and macaque monkeys. Vision Research, 47, 35–49.
Everling, S., Dorris, M. C., Klein, R. M., & Munoz, D. P. (1999). Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. Journal of Neuroscience, 19, 2740–2754.
Everling, S., & Munoz, D. P. (2000). Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. Journal of Neuroscience, 20, 387–400.
Falkenstein, M., Hohnsbein, J., & Hoormann, J. (1991). Effects of cross-modal divided attention on late ERP components: II. Error processing in choice reaction tasks. Electroencephalography & Clinical Neurophysiology, 78, 447–455.
Falkenstein, M., Hohnsbein, J., & Hoormann, J. (1995). Event related potential correlates of errors in reaction tasks. In G. Karmos, M. Molnár, V. Csépe, I. Czigler, & J. E. Desmedt (Eds.), Perspectives of event-related potentials research (pp. 287–296). Amsterdam: Elsevier.
Gandhi, N. J., & Keller, E. L. (1999). Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. Journal of Neurophysiology, 82, 3254–3267.
Garavan, H., Ross, T. J., Kaufman, J., & Stein, E. A. (2003). A midline dissociation between error-processing and response-conflict monitoring. NeuroImage, 20, 1132–1139.
Gaymard, B., Ploner, C. J., Rivaud, S., Vermersch, A. I., & Pierrot-Deseilligny, C. (1998). Cortical control of saccades. Experimental Brain Research, 123, 159–163.
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390.
Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception & Performance, 14, 331–344.
Guitton, D., Bergeron, A., Choi, W. Y., & Matsuo, S. (2003). On the feedback control of orienting gaze shifts made with eye and head movements. Progress in Brain Research, 142, 55–68.
Hanes, D. P., & Carpenter, R. H. S. (1999). Countermanding saccades in humans. Vision Research, 39, 2777–2791.
Hanes, D. P., Patterson, W. F., II, & Schall, J. D. (1998). The role of frontal eye fields in countermanding saccades: Visual, movement, and fixation activity. Journal of Neurophysiology, 79, 817–834.
Hanes, D. P., & Schall, J. D. (1995). Countermanding saccades in macaque. Visual Neuroscience, 12, 929–937.
Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274, 427–430.
Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the errorrelated negativity. Psychological Review, 109, 679–709.
Holroyd, C. B., Yeung, N., Coles, M. G. H., & Cohen, J. D. (2005). A mechanism for error detection in speeded response time tasks. Journal of Experimental Psychology: General, 134, 163–191.
Huerta, M. F., & Kaas, J. H. (1990). Supplementary eye field as defined by intracortical microstimulation: Connections in macaques. Journal of Comparative Neurology, 293, 299–330.
Huerta, M. F., Krubitzer, L. A., & Kaas, J. H. (1987). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: II. Cortical connections. Journal of Comparative Neurology, 265, 332–361.
Husain, M., Parton, A., Hodgson, T. L., Mort, D., & Rees, G. (2003). Self-control during response conflict by human supplementary eye field. Nature Neuroscience, 6, 117–118.
Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 302, 120–122.
Johnston, K., Levin, H. M., Koval, M. J., & Everling, S. (2007). Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron, 53, 453–462.
Jones, A. D., Cho, R. Y., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective, & Behavioral Neuroscience, 2, 300–317.
Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 13, 1023–1026.
Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology, 37, 216–223.
Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate of response bias in monkey caudate nucleus. Nature, 418, 413–417.
Lecas, J.-C., Requin, J., Anger, C., & Vitton, N. (1986). Changes in neuronal activity of the monkey precentral cortex during preparation for movement. Journal of Neurophysiology, 56, 1680–1702.
Lo, C. C., & Wang, X. J. (2006). Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience, 9, 956–963.
Logan, G. D. (1994). On the ability to inhibit thought and action: A users’ guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 189–239). San Diego: Academic Press.
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91, 295–327.
Lu, X., Matsuzawa, M., & Hikosaka, O. (2002). A neural correlate of oculomotor sequences in supplementary eye field. Neuron, 34, 317–325.
Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. Oxford: Oxford University Press.
Luppino, G., Matelli, M., & Rizzolatti, G. (1990). Cortico-cortical connections of two electrophysiologically identified arm representations in the mesial agranular frontal cortex. Experimental Brain Research, 82, 214–218.
Matsumoto, K., Matsumoto, M., Abe, H., & Tanaka, K. (2007). Medial prefrontal cell activity signaling prediction errors of action values. Nature Neuroscience, 10, 647–656.
Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 301, 229–232.
Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Eventrelated brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9, 787–797.
Mitz, A. R., & Godschalk, M. (1989). Eye-movement representation in the frontal lobe of rhesus monkeys. Neuroscience Letters, 106, 157–162.
Munoz, D. P., & Istvan, P. J. (1998). Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. Journal of Neurophysiology, 79, 1193–1209.
Munoz, D. P., & Wurtz, R. H. (1993). Fixation cells in monkey superior colliculus: II. Reversible activation and deactivation. Journal of Neurophysiology, 70, 576–589.
Murthy, A., Ray, S., Shorter, S. M., Priddy, E. G., Schall, J. D., & Thompson, K. G. (2007). Frontal eye field contributions to rapid corrective saccades. Journal of Neurophysiology, 97, 1457–1469.
Murthy, A., Thompson, K. G., & Schall, J. D. (2001). Dynamic dissociation of visual selection from saccade programming in FEF. Journal of Neurophysiology, 86, 2634–2637.
Mushiake, H., Fujii, N., & Tanji, J. (1996). Visually guided saccade versus eye-hand reach: Contrasting neuronal activity in the cortical supplementary and frontal eye fields. Journal of Neurophysiology, 75, 2187–2191.
Nachev, P., Rees, G., Parton, A., Kennard, C., & Husain, M. (2005). Volition and conflict in human medial frontal cortex. Current Biology, 15, 122–128.
Nakamura, K., Roesch, M. R., & Olson, C. R. (2005). Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. Journal of Neurophysiology, 93, 884–908.
Niki, H., & Watanabe, M. (1976). Cingulate unit activity and delayed response. Brain Research, 110, 381–386.
Niki, H., & Watanabe, M. (1979). Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Research, 171, 213–224.
Olson, C. R., & Gettner, S. N. (1999). Macaque SEF neurons encode object-centered directions of eye movements regardless of the visual attributes of instructional cues. Journal of Neurophysiology, 81, 2340–2346.
O’Sullivan, E. P., Jenkins, I. H., Henderson, L., Kennard, C., & Brooks, D. J. (1995). The functional anatomy of remembered saccades: A PET study. NeuroReport, 6, 2141–2144.
Paré, M., & Hanes, D. P. (2003). Controlled movement processing: Superior colliculus activity associated with countermanded saccades. Journal of Neuroscience, 23, 6480–6489.
Parthasarathy, H. B., Schall, J. D., & Graybiel, A. M. (1992). Distributed but convergent ordering of corticostriatal projections: Analysis of the frontal eye field and the supplementary eye field in the macaque monkey. Journal of Neuroscience, 12, 4468–4488.
Parton, A., Nachev, P., Hodgson, T. L., Mort, D., Thomas, D., Ordidge, R., et al. (2007). Role of the human supplementary eye field in the control of saccadic eye movements. Neuropsychologia, 45, 997–1008.
Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70, 453–469.
Paus, T., Tomaiuolo, F., Otaky, N., MacDonald, D., Petrides, M., Atlas, J., et al. (1996). Human cingulate and paracingulate sulci: Pattern, variability, asymmetry, and probabilistic map. Cerebral Cortex, 6, 207–214.
Petit, L., Courtney, S. M., Ungerleider, L. G., & Haxby, J. V. (1998). Sustained activity in the medial wall during working memory delays. Journal of Neuroscience, 18, 9429–9437.
Petit, L., Orssaud, C., Tzourio, N., Salamon, G., Mazoyer, B., & Berthoz, A. (1993). PET study of voluntary saccadic eye movements in humans: Basal ganglia-thalamocortical system and cingulate cortex involvement. Journal of Neurophysiology, 69, 1009–1017.
Procyk, E., Tanaka, Y. L., & Joseph, J. P. (2000). Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nature Neuroscience, 3, 502–508.
Rabbitt, P. M. A. (1966). Errors and error-correction in choice-response tasks. Journal of Experimental Psychology, 71, 264–272.
Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111, 333–367.
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.
Rieger, M., & Gauggel, S. (1999). Inhibitory after-effects in the stop signal paradigm. British Journal of Psychology, 90, 509–518.
Roelofs, A., van Turennout, M., & Coles, M. G. H. (2006). Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks. Proceedings of the National Academy of Sciences, 103, 13884–13889.
Sato, T. R., & Schall, J. D. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38, 637–648.
Schall, J. D. (1991a). Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: Comparison with supplementary eye fields. Journal of Neurophysiology, 66, 559–579.
Schall, J. D. (1991b). Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. Journal of Neurophysiology, 66, 530–558.
Schall, J. D. (1997). Visuomotor areas of the frontal lobe. In K. Rockland A. Peters, & J. Kaas (Eds.), Cerebral cortex: Vol. 12. Extrastriate cortex of primates (pp. 527–638). New York: Plenum.
Schall, J. D. (2004). On building a bridge between brain and behavior. Annual Review of Psychology, 55, 23–50.
Schall, J. D., Stuphorn, V., & Brown, J. W. (2002). Monitoring and control of action by the frontal lobes. Neuron, 36, 309–322.
Schall, J. D., & Thompson, K. G. (1999). Neural selection and control of visually guided eye movements. Annual Review of Neuroscience, 22, 241–259.
Scheffers, M. K., Coles, M. G. H., Bernstein, P., Gehring, W. J., & Donchin, E. (1996). Event-related brain potentials and error-related processing: An analysis of incorrect responses to go and no-go stimuli. Psychophysiology, 33, 42–53.
Schiller, P. H., & Chou, I. (2000). The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements in the rhesus monkey: 1. Single and sequential targets. Vision Research, 40, 1609–1626.
Schiller, P. H., True, S. D., & Conway, J. D. (1980). Deficits in eye movements following frontal eye field and superior colliculus ablations. Journal of Neurophysiology, 44, 1175–1189.
Schlag, J., & Schlag-Rey, M. (1987). Evidence for a supplementary eye field. Journal of Neurophysiology, 57, 179–200.
Schlag-Rey, M., Amador, N., Sanchez, H., & Schlag, J. (1997). Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature, 390, 398–401.
Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288.
Segraves, M. A. (1992). Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. Journal of Neurophysiology, 68, 1967–1985.
Segraves, M. A., & Goldberg, M. E. (1987). Functional properties of corticotectal neurons in the monkey’s frontal eye field. Journal of Neurophysiology, 58, 1387–1419.
Shidara, M., & Richmond, B. J. (2002). Anterior cingulate: Single neuronal signals related to degree of reward expectancy. Science, 296, 1709–1711.
Shima, K., Aya, K., Mushiake, H., Inase, M., Aizawa, H., & Tanji, J. (1991). Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. Journal of Neurophysiology, 65, 188–202.
Shima, K., & Tanji, J. (1998). Role of cingulate motor area cells in voluntary movement selection based on reward. Science, 282, 1335–1338.
Sommer, M. A., & Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of Neurophysiology, 83, 1979–2001.
Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3, 952–964.
Stanton, G. B., Bruce, C. J., & Goldberg, M. E. (1993). Topography of projections to the frontal lobe from the macaque frontal eye fields. Journal of Comparative Neurology, 330, 286–301.
Stuphorn, V., & Schall, J. D. (2006). Executive control of countermanding saccades by the supplementary eye field. Nature Neuroscience, 9, 925–931.
Stuphorn, V., Taylor, T. L., & Schall, J. D. (2000). Performance monitoring by the supplementary eye field. Nature, 408, 857–860.
Sumner, P., Nachev, P., Morris, P., Peters, A. M., Jackson, S. R., Kennard, C., & Husain, M. (2007). Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron, 54, 697–711.
Takahashi, M., Sugiuchi, Y., Izawa, Y., & Shinoda, Y. (2005). Synaptic inputs and their pathways from fixation and saccade zones of the superior colliculus to inhibitory burst neurons and pause neurons. In S. Ramat & D. Straumann (Eds.), Clinical and basic oculomotor research (Annals of the New York Academy of Sciences, Vol. 1039, pp. 209–219). New York: New York Academy of Sciences.
Taylor, S. F., Martis, B., Fitzgerald, K. D., Welsh, R. C., Abelson, J. L., Liberzon, I., et al. (2006). Medial frontal cortex activity and lossrelated responses to errors. Journal of Neuroscience, 26, 4063–4070.
Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage, 14, 1387–1401.
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108, 550–592.
Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2005). On the difference between response inhibition and negative priming: Evidence from simple and selective stopping. Psychological Research, 69, 262–271.
Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.
Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cerebral Cortex, 15, 535–544.
Author information
Authors and Affiliations
Corresponding author
Additional information
Our research has been supported by NSF Grant BCS0218507, by NIH Grants R01-MH55806, P30-EY08126, and F32-EY016679, and by Robin and Richard Patton through the E. Bronson Ingram Chair of Neuroscience.
Rights and permissions
About this article
Cite this article
Schall, J.D., Boucher, L. Executive control of gaze by the frontal lobes. Cognitive, Affective, & Behavioral Neuroscience 7, 396–412 (2007). https://doi.org/10.3758/CABN.7.4.396
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.3758/CABN.7.4.396