
Abstract: The industry has experienced significant advancements in recent years, primarily focusing on smart
manufacturing, culminating in the Industry 4.0 (I4.0) revolution I4.0 emphasizes interconnectivity, real time data
capture and transmission among machines, autonomy, and machine learning, providing manufacturing companies
numerous growth opportunities. The Industrial Internet of Things (IIoT) is a core component of this revolution,
becoming integral to each system and increasing complexity due to the vast number of interconnected devices
and diverse physical components. The variety of virtual services distributed across the architectural layers of
industrial systems (cloud, fog, edge) and the various connection types between IIoT devices introduce security and
privacy challenges, which are critical issues for any system incorporating IIoT. To fully leverage IIoT’s potential,
addressing these security and privacy concerns is essential. Research and design in this domain are challenging,
particularly when creating a simulation environment to study a system’s behavior over time. Despite the extensive
research in IoT and the significant benefits of simulation based approaches, there remains a challenge in creating
detailed representations from the underlying IoT nodes to the application layer in the cloud, along with the
underlying networking infrastructure. To assist researchers and practitioners in overcoming these challenges, we
propose the Discrete Event System Specification (DEVS) formalism. DEVS provides a mathematical framework
for modeling systems, whether discrete or continuous events, allowing for the simulation of these systems within
the DEVS environment. Every system, whether real or conceptual, has a time base, inputs, outputs, and functions
to determine the next state, as well as outputs that reflect the current state and inputs. Simulating the systemwithin
the DEVS environment allows one to study its behavior to predict and optimize performance patterns.

Key-Words: DEVS, Industrial IoT, Industry 4.0, Operational Technology

Received: June 22, 2024. Revised: November 2, 2024. Accepted: November 24, 2024. Published: December 6, 2024.

1 Introduction
The rapid growth in the industrial sector to meet
today’s diverse and dynamic market demands
has sparked a revolution known as Industry 4.0.
This revolution focuses on integrating innovative
technologies to achieve robust and efficient
manufacturing from a cost perspective. A key
technology driving this industrial revolution is the
Internet of Things (IoT). The widespread adoption
of IoT has transformed businesses into digital
enterprises by leveraging data from sensors and
devices. The significant increase in IoT devices
impacts traditional Operational Technologies (OT),
enhancing productivity and generating substantial
revenue for organizations. However, despite
the advantages of Industry 4.0, it encounters
various risks, both in terms of security threats
and challenges related to implementing complex
systems in factories. From a security perspective,
Industry 4.0 is vulnerable to threats such as industrial

espionage, sabotage, unauthorized access, theft,
digital attacks, and malicious disruptions. Ensuring
robust cybersecurity measures is essential. On the
implementation side, deploying complex systems
and monitoring their behavior in real industrial
environments may be challenging. Ensuring proper
communication and coordination between various
components may lead to inefficiencies, increased
costs, and delays. Due to such reason, the proposed
research work focuses on defining a simulator
enabling the designing team of OT systems to
customize any aspects of the model in order to focus
the study on specific features (or even whole system
behavior). In this direction, our simulator offers
several facilities that simulate diverse scenarios,
allowing for a thorough examination of security
vulnerabilities and implementation challenges. The
flexible framework offered by the simulator enables
users to design the desired system based on their
specific needs, focusing either on the entire system’s

Discrete Event Modeling and Simulation Approaches for IIoT 
 

GHENA BARAKAT1, LUCA D’AGATI1, GIUSEPPE TRICOMI1,2, 
FRANCESCO LONGO1, ANTONIO PULIAFITO1, GIOVANNI MERLINO1 

2ICAR-CNR: Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle

 

Ricerche Italiano, Napoli, ITALY 

1Università di Messina, Dipartimento di Ingegneria, Messina, ITALY 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2456 Volume 21, 2024



behavior or individual system components. This
approach facilitates a deeper understanding and
prediction of potential risks or technical issues that
may occur while the system is running. It helps
optimize performance and suggests solutions to some
issues, enabling system administrators to address
and resolve problems effectively. Additionally, it
enhances OT systems’ resilience against known and
emerging threats.
The contribution of this work focuses on addressing
challenges may arise when integrating Internet of
Things devices into industrial environments, with
particular emphasis on implementation complexities
and security concerns within Operational
Technology. In this research, we introduce a
simulator that allows designers to thoroughly
examine various aspects of their models, showcasing
the flexibility of the simulation environment to
create and analyze different scenarios. This enables
a detailed assessment of potential risks, especially
connection issues that can occur when designing such
complex systems in industrial settings. The research
also contributes to optimizing system performance
by providing solutions to anticipated risks and
challenges in real world industrial environments.

The remainder of the paper is structured as
follows: the related work section discusses the
existing work focusing the security threats faced
by IIoT devices, followed by an overview of
the IoTNetSim and ”FS-IIoTSim” simulators,
highlighting their limitations in section 3. Next,
we explain the Discrete Event System Specification
(DEVS) simulator and its application for modeling
and simulating various industrial systems, comparing
it to the previous two simulators. This is followed
by a case study that demonstrates the use of the
DEVS environment to model a simple system and
extends the approach to designing more complex
systems in detail in section 4. Section 5 concludes
the proposed work and suggesting future research
that could validate DEVS’s potential for creating
realistic industrial models.

2 Related Work
The nature of IoT makes it tough for researchers to
bring their ideas from the lab into the real world.
They face obstacles when trying to develop and
test initial concepts and prototypes. Building these
early prototypes with many connected devices is
often impractical during the early design and testing
phases because of costs, operational challenges,
and unproven protocols. Additionally, using real
hardware for experiments is costly and requires
broad technical expertise. To tackle these issues,
researchers turn to simulation environments to test
their ideas and theories. However, each simulation

environment has its own set of drawbacks. This
section will look at different simulation environments
used for modeling and simulating systems in IIoT
security, focusing on their limitations. This will
help us highlight the benefits of using the Discrete
Event System specification simulator to address
these limitations by exploring different modeling and
simulation techniques used to assess IIoT security.

2.1 IIOT Security Threats
The integration of diverse technologies and
operational environments in IIoT systems brought
a cybersecurity challenges that encompass several
threats aiming at exploitation of vulnerabilities across
various layers of IIoT by some of attacking methods
like[1], [2]:
Remote Code Execution: This type of attack is used
to gain remote control over devices by allowing the
attackers to exploit the vulnerabilities in the system.
The attackers aims at leveraging from this attack in
performing malicious activities like orchestrating
botnet attacks, data theft, or malware installation.
SQL Injection: Attackers aims at injecting a
malicious SQL commands into URL query strings,
or web forms. This will cause comprimisation in
database integrity by granting administrative access
stealing sensitive data.
DNS Poisoning/Spoofing: By applying this type of
attacks to the system, attackers will be able to corrupt
DNS data and redirect users to malicious websites
instead of the requested one in order to steal their
personal or payment details or to install malware on
their devices.
Web Application: Malware infection on IIoT
devices may cause stealing users data, using
the infected devices to lunch Denial of Service
(DoS) attacks on specific server or even disrupting
operations. Furthermore the devices security and
functionality may be comprimised by the Brute
Force attacks that target IIoT devices by repeatedly
guessing passwords, which will also led to using the
attacked devices in the same way as the malware
infection uses them.
Data Sniffing: The attacker in this type of attacks
aims at data interception and capturing, resulting
in breaching privacy, and compromising sensitive
information. The Reverse Engineering as well
exposes sensitive information of the targeted
devices as well as their vulnerabilities, allowing to
sophisticate attacks or even inject malicious code.
Wireless Network: In this type of attacks the
attackers aims at exploiting vulnerabilities in wireless
protocols or the encryption or the configuration,
aiming at gaining unauthorized access to the network.
Due to this type of attack the data may be stolen, or
the network resources may be used by unauthorized

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2457 Volume 21, 2024



users or even there will be disruption for the data
being transmitted.
Data Manipulation Due to the lack of integrity
checks, or plaintext data transmission or even the
checksum vulnerabilities in the industrial networks,
attackers try to corrupt data, disrupt operations or
even breach system security.
Replay Attacks This type of attack involve capturing
data backets being transmited through the network
and retransmit it to specific device system or
operators, causing to breach system security,
misleading data interpretations, or even operational
disruptions.

2.2 IoTNetSim
IoTNetSim, [3], [4], is a platform for modeling
and simulating IoT services and networks from start
to finish. It has a self contained, multilayered
architecture enabling the user to model different
structures of IoT systems, including the services
they offer and the network connections between
components. It is primarily known for its detailed
modeling of IoT nodes and sensors, considering
power sources and mobility, which makes it very
accurate for testing algorithms and configurations.
This simulation environment supports a wide range
of communication protocols like LoRa, ZigBee,
WiFi, and cellular, allowing users to evaluate system
performance from various angles. IoTNetSim also
supports a broad spectrum of IoT components,
including gateways and mobile nodes, making it
easier to simulate different applications.
It emphasizes realistic simulation of network and
battery failures. It can model data flow in addition to
its ability to allow the researchers to implement their
algorithms, which in some cases aim at keeping the
Security and privacy of the data being transformed
between different nodes and components of the
designed system as well as processing across different
layers of the system. Designed to be compatible
with numerous tools and programming languages,
IoTNetSim is well suited for IoT research and
development. However, it has some limitations.
One major challenge is modeling complex sensor
mobility, which can be difficult. Indeed, the
management of huge complex systems can also be
challenging, and the current simulator architecture
may need such efforts when integrating new protocols
with a wide range of tools. This is a great platform
limitation, making the simulation of different IoT
systems difficult.

2.3 ”FS-IIoTSim”
”FS-IIoTSim”, [5], [6], is a simulation tool designed
for evaluating the performance of Industrial Internet
of Things systems under various conditions. It

addresses the unique challenges of industrial
applications, including predictive maintenance,
real time monitoring, and factory automation.
”FS-IIoTSim” supports several existing and new
communication protocols and can handle large scale
IIoT networks. Its flexibility and scalability allow
users to add or update components, making it suitable
for testing and validating IIoT solutions in real
world industrial settings. One of its key strengths
is its ability to provide detailed modeling of IIoT
devices, considering communication capabilities,
power consumption, and data generation rates. This
ensures accurate performance assessments for the
models being tested.

Additionally, ”FS-IIoTSim” can simulate device
malfunctions, power outages, and network failures,
which is crucial for evaluating the resilience and
reliability of IIoT systems in harsh industrial
environments. The tool also allows for real time
data processing during transfers between devices.
Additionally, it can simulate security threats within
the IIoT environment, enabling users to model
various attacks to evaluate the robustness of specific
protocols and analyze network performance under
attack conditions. This helps designers develop
recovery plans to reduce the impact of such threats
on real systems and improve the performance and
effectiveness of the proposed protocols. Despite its
strengths, ”FS-IIoTSim” has some limitations. The
complexity of simulating certain systems can make
it difficult and time consuming to set up and achieve
desired results. Custom simulation scenarios may
be needed for specific research purposes, but the
tool might not come with a comprehensive library
of prebuilt scenarios. Integrating ”FS-IIoTSim”
with other development and analysis tools can
require additional effort and may only be successful
sometimes. While ”FS-IIoTSim” has a user friendly
interface, mastering its full range of capabilities
can take time, especially for complex systems. The
tool is structured into three integral components:
scenario modeling, performance evaluation, and
the user interface. Scenario modeling facilitates
the creation of detailed models and generates trace
files containing device operation logs. Performance
evaluation analyzes these trace files, focusing on
latency and energy consumption metrics. The user
interface ties these components together, providing a
comprehensive simulation experience.

Despite the capabilities of the current simulators,
Industry 4.0 needs to improve its tools to study
IIoT systems from a security perspective. Most
existing simulators predominantly focus on power
consumption and data flow within IoT systems. Our
research aims to address this gap by emphasizing

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2458 Volume 21, 2024



the significance of using DEVS for modeling IIoT
systems through a security lens. We will provide
an overview of the DEVS framework, followed by
a detailed discussion of its applications within the
industrial sector.

As shown in Table 1, DEVS excels in several
key areas, such as scalability, flexibility, and security
modeling. This makes it a highly versatile tool for
modeling and simulating complex industrial systems,
particularly those involving IIoT, where real time
behavior and security are critical factors.

3 Descret Event System Specification
In 1976, Bernard P. Zeigler introduced the Discrete
Event System Specification (DEVS) formalism,
which offers a mathematical framework for modeling
both discrete and continuous event based systems.
Every real or conceptual system operates with a time
base, inputs, outputs, and functions that determine
the system’s next state and output, reflecting the
current state based on its inputs. Utilizing DEVS
for simulation allows us to analyze system behavior,
enabling performance prediction and optimization,
[7, 8].
Figure 1 illustrates the conceptual framework that
underpins the DEVS formalism, focusing on three
fundamental objects involved in the modeling and
simulation process:
• Source system, whether existing (real world)
or proposed, can be viewed as a source of
information or a set of input/output data over time
segments.

• Behavior Database is a reference that holds
records of the source system behavior in different
scenarios to confirm and validate the model’s
accuracy and its simulation results to match it
with real life behavior.

• The Experimental Frame outlines the scope and
limits of the source system behavior by detailing
the data collection, testing of the system, and
evaluation of the behavior after simulation.

• Model, a set of instructions designed to generate
data comparable to what can be observed in a real
system. The model’s structure consists of these
instructions, while its behavior encompasses all
potential input/output data that can be produced
by accurately executing these instructions.

• Simulator executes the model’s directives to
produce its behavior.

Figure 1 also shows that the main components are
connected through two types of relations.
• Modeling relation, which defines how well the
model represents the system or entity being
modeled and where it links between the real
system and model.

Source System

Model

Behavior
Database

Simulator

Experimental Frame

M
od

el
in

g 
R

el
at

io
n

Simulation Relation

Fig. 1: Basic Entities and Relations in DEVS
Environment

Fig. 2: Model state diagram for constant population
• Simulation relation, which represents how
faithfully the simulator can carry out the
instructions of the model where it links between
the model and simulator.

This formalism specifies the system structure
through interconnected models and describes the
system behavior using atomicmodels, including input
and output events, states, and how the system will
evolve in response to external inputs [7, 9, 10].

3.1 Using DEVS to Model and Simulate IIoT
Systems

In [11], we employed the DEVS simulator to model
and simulate an IoT Botnet to examine how the
botnet spreads through a network when targeting IoT
devices. We categorized the total population of IoT
devices into four primary states, and the transition
behavior of these devices from one state to another
is illustrated in Figure 2. The flow between the four
states can be explained as follows: A node in the
Susceptible state (S1) can become infected and move
to state I at a rate of α1. Alternatively, it might switch
to another Susceptible state (S2) at a rate of µ or
remain in S1 at a rate of γ1. Nodes in S2, which have
a lower risk of infection, can either stay in S2 at a rate
of γ2 or become infected and transition to state I at a
rate of α2. Once a node is in the Infected state (I), it
can move to the Active state (A) (where it can attack
the target) at a rate of ρ, remain infected in I at a rate
of γ3, return to the susceptible S1 state at a rate of λ,
or move to the lower risk S2 state at a rate of µ. If
a node reaches the Active state (A), it can either go
back to I at a rate of σ, remain in A at a rate of γ4, or
transition to either the S1 or S2 state at rates of λ and
µ, respectively.

Due to the rapid technological advancements,
cybersecurity attracted the researchers focus
especially in the industrial systems. The complixity
and operational importance for these systems requires

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2459 Volume 21, 2024



Table 1. Comparison of DEVS, IoTNetSim, and ”FS-IIoTSim” Simulators
Feature DEVS IoTNetSim ”FS-IIoTSim”
Scalability High: Handles large, complex systems

with modular decomposition
Medium: Struggles with very large
systems, especially complex sensors

High: Can scale to large IIoT networks
but setup is time consuming

Flexibility Very flexible: Easily integrates new
protocols and components

Limited: Architecture makes integrating
new protocols difficult

Flexible: Can add or update components
but requires additional effort

real time Simulation Detailed real time behavior and
interactions between components

Supports real time simulation, but less
robust than DEVS

Supports real time data processing but
requires more effort

Security Modeling Strong focus on security, allows detailed
simulation of attack scenarios and failure
conditions

Limited security simulation, focuses
more on power consumption and data
flow

Simulates security threats but not as
extensively as DEVS

Ease of Use Medium: Requires initial setup but
components can be reused for larger
systems

High: User friendly for small to medium
systems, challenging for complex
scenarios

Medium: User friendly interface but
mastering complex systems takes time

Integration with other Tools High: Standardized formalism allows
easy integration with other tools

Limited: Challenges in integrating new
tools due to system architecture

Limited: Integration with other tools can
require additional effort

robust security measures, aiming at preventing any
financial losses or damages that may affect its
performance. The industrial IoT systems requires
heightened awareness of potential security threats.
This can be linked several factors like: the wide range
of the technological and manufacturing devices and
services, as well as the continuous communication
and data exchange between systems and their
associated networks. This research uses the Discrete
Event System Specification simulator to understand
and evaluate how systems behave. It offers practical
recommendations to reduce and prevent different
types of attacks, helping to safeguard systems from
serious damage and losses.
By comparing between IoTNetSim and DEVS
simulator, we found out that IoTNetSim Unlike
DEVS experiance diffeculties in dealing with
complex systems especially if these systems contains
advanced sensors. While the performance of DEVS
in simulating complex systems seems to be better due
to its capabilities in breaking down these systems into
smaller sub systems (Atomic Models). Furthermore,
implementing new protocols which considered
important for communication in such industrial
IoT systems does not requier major architectural
changes in DEVS. Unlike IoTNetSim that find it
challenging process to implement the new protocols.
Additionally, the real time simulation capabilities for
behaviour and the interaction between the system
components in DEVS is higher than in IoTNetSim.
Where despite the strong modeling for nodes and
sensors, IoTNetSim still faces inherent limitations in
its simulation capabilities making it less robust.
On the other hand, by comparing ”FS-IIoTSim”
with DEVS simulator, we found that creating a
custom scenario may present some challenges for
the users due to the need of pre built scenarios
and systems complexities. Despite that, we can
integrate DEVS with other tools for some scenarios
if required by leveraging its standardized formalism.
Unlike ”FS-IIoTSim”, where this may requires extra
effort to realize a successful integration with other
tools in which it may obstruct system evaluation

Fig. 3: Smart Factory Sub System

in some cases. Additionally, DEVS outperforms
”FS-IIoTSim” in terms of simulation and evaluation
from a resilience and reliability perspective. DEVS
can accurately model discrete events and failure
conditions, including their impacts. In contrast,
”FS-IIoTSim” often requires more time and effort
to achieve similar results and may reach a different
level of accuracy.

4 Case Study Application
In this section, we will provide a detailed explanation
of using the DEVS simulator for modeling and
simulating complex systems. We will begin by
outlining the step by step process of building a simple
system and then demonstrate how to expand it to
represent a more complex system for a factory.

4.1 Simple System Representation on DEVS
As illustrated in Figure 3, we assume that the basic
factory system consists of three primary components:
the Sensor, the PLC, and the Actuator. Each
component can be considered a separate model with
distinct behaviors, referred to as an Atomic Model.
We develop each component individually, defining
it as a separate model that includes all potential
transitions within each model.

Starting with the Sensor Atomic Model, we
identify three main states: the first state is Idle,

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2460 Volume 21, 2024



Fig. 4: Sensor Model

the second is Monitoring, and the third is Active.
The sensor remains in the Idle state (inactive) until
it receives a signal to begin sensing, triggering an
external transition that changes its state from Idle
(I) to Monitoring (M). After sensing is completed,
it generates a message and undergoes an internal
transition to change the state from Monitoring (M)
to Active (A). In the active state (A), the generated
message containing the sensed data is sent to the PLC.
It then internally transitions back to the Idle state (I),
awaiting another signal to start sensing again. The
following steps are needed to model the described
behavior:
• Identify and define all the input ports, output
ports, and states that represent the system’s
behavior.

• Initialize the constructor for the Sensor class and
add the previously defined ports.

• Create an initialization function to set the
sensor’s initial state to I (Idle).

• Develop an internal transition function to
determine the current state and transition to the
next state accordingly.

• Implement the external transition function to
change the state based on the received input,
which will transition from state I (Idle) to M
(Monitoring).

• Design the output function to send the generated
message (sensed data) to the next model.

After completing these steps, the model will be
generated in the simulator, as illustrated in Figure 4.

Now, considering the PLC Model as illustrated in
Figure 3, it also comprises three fundamental states
that define its behavior: the first is the Idle state,
indicating the PLC is inactive; the second is the
Processing state, where the data is analyzed; and the
third is the Sending Command state. The model
undergoes an external transition when it receives data
from the sensor model, moving from the Idle state
to the Processing state to analyze the data. Once
the analysis is complete, an internal transition occurs,
changing the state from Processing (P) to Sending
Command (SC). In this state, the PLC sends the
command generated during the processing stage to the
next model and subsequently returns to the Idle state,
awaiting further data from the sensor. The following
steps are needed to model the described behavior:
• Define the input and output ports, and states
representing the model’s behavior.

Fig. 5: PLC Model

• Initialize the constructor for the PLC class and
incorporate the previously defined ports.

• Create an initialization function to set the PLC’s
initial state to I (Idle).

• Develop an internal transition function to assess
the current state and determine the appropriate
transition to the next state.

• Implement the external transition function to
change the state based on incoming input, which,
in this scenario, will be a transition from state I
(Idle) to P (Processing).

• Design the output function to transmit the
generatedmessage (command) to the nextmodel.

Upon completing these steps, the model will be
created in the simulator, as depicted in Figure 5.

The final model in this scenario is the Actuator
Model, which also comprises three states: the Idle,
Active, and Failure. When the model receives an
input representing the command prepared by the PLC
model, it triggers an external transition, changing
the system state from Idle (I) to Active (A). If the
system is in any other state, its behavior will change
internally. The Failure state occurs when an issue
with the received command prevents the actuator
from processing it. In this case, the actuator sends a
signal to the Sensor model to initiate sensing again
and repeat the process. To model the described
behavior, follow these steps:
• Define the input ports, output ports, and states
that capture the behavior of the model.

• Initialize the constructor for the Actuator class
and add the defined ports.

• Create an initialization function to set the initial
state of the Actuator, starting with state I (Idle).

• Develop an internal transition function to
evaluate the current state and decide on the
appropriate transition to the next state.

• Implement the external transition function to
change the state based on the received input,
which in this case will involve transitioning from
state I (Idle) to A (Active).

• Design the output function to send a signal back
to the Sensor model in case of an error in the
command received from the PLC.

After completing these steps, the model will be
generated in the simulator, as shown in Figure 6.
Furthermore, when the three models are combined,
the resulting system is illustrated in Figure 7 below.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2461 Volume 21, 2024



Fig. 6: Actuator Model

Fig. 7: Complete Simple System

4.2 Complex System Representation on
DEVS

When dividing a complex system into smaller parts,
we will have a simple part, where building these
parts and combining them together will lead to having
a complete system, which will be more complex.
In our scenario, we discussed a simple system
consisting of one Actuator, sensor, and PLC. We
discussed the behavior of each system and the way of
communication between the three models to explain
the idea of using DEVS. In this part of the paper, we
will discuss a more complex system consisting of 10
sensors, one PLC, and 10 actuators; note that we can
scale up the system as we need to have hundreds of
devices based on the factory’s needs. However, the
whole Idea explains how to convert a simple system
to a complex one in our case. We built the three basic
atomic models from the previous part: the sensor,
PLC, and actuator. In this part, we will use the
same models with slight changes to create the model
shown in Figure 8. To replicate the complex system
illustrated, follow these steps:
• Modify the sensor’s code to include the sensor
number in the message it sends.

• For the PLC, add output ports equal to the total
number of actuators in the system; 10 output
ports in this case.

Fig. 8: Complex System

• Implement a queue in the PLC class to store
incomingmessages from all sensors in the correct
order.

• Update the Message out function to extract the
sensor number from each message stored in the
queue.

• Develop an algorithm according to the system’s
requirements to forward the command to the
appropriate actuator. In this case, the command
is sent to the actuator corresponding to the sensor
that transmitted the data.

• In the system class that integrates all
components, ensure that each model is correctly
connected to the appropriate models for sending
and receiving data.

5 Conclusion
In this work, we presented a comprehensive method
for utilizing DEVS to model and simulate complex
industrial systems. We showed that building a
whole system and reflecting it’s overall behavior
requires breaking it down to its core components,
model each of these components separately, and
coupled the components to represent the system. In
Order to simulate a complex interactions between
the atomic models by customizing them. A detailed
explanation on constructing a complex model using
the previously developed Atomic models to create
more sophisticated system were discussed earlier in
this research. This shows the flexibility of the DEVS
simulator, Gaining clearer insights for the system
behavior and possible risksmay occur in the industrial
environments. The discussed approach for modeling
aims at detecting possible risks in OT systems aiming
at optimizing and enhancing the system performance.
As well as providing valuable insights into the
system’s resilience, and communication efficiency.
Following the modular design principles, future
enhancements and modifications can be seamlessly
integrated into the system. The potential of
the DEVS simulator extends beyond this point.
The proposed work opens a scope to focus on
incorporating more advanced features such as real
time monitoring, scalability for larger systems, and
integrating cybersecurity scenarios to better evaluate
and mitigate risks in Industry 4.0 environments. This
simulator is a versatile tool that is valuable for
both practical applications and academic research,
enabling the design and optimization of modern
industrial systems.

Disclosure Instructions
During the preparation of this work the authors used
Grammarly for language editing. After using this
service, the authors reviewed and edited the content
as needed and take full responsibility for the content
of the publication.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2462 Volume 21, 2024



and its countermeasures,” in 2018 IEEE
Global Conference on Wireless Computing and
Networking (GCWCN), pp. 124–130, IEEE,
2018.

[2] Y. Shah and S. Sengupta, “A survey on
classification of cyber-attacks on iot and
iiot devices,” in 2020 11th IEEE Annual
Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON),
pp. 0406–0413, IEEE, 2020.

[3] M. Salama, Y. Elkhatib, and G. Blair,
“Iotnetsim: A modelling and simulation
platform for end-to-end iot services and
networking,” in Proceedings of the 12th
IEEE/ACM International Conference on Utility
and Cloud Computing, pp. 251–261, 2019.

[4] K. O. Chee, M. Ge, G. Bai, and D. D. Kim,
“Iotsecsim: A framework for modelling and
simulation of security in internet of things,”
Computers & Security, vol. 136, p. 103534,
2024.

[5] H.-H. Lee, J.-H. Kwon, and E.-J. Kim,
“Fs-iiotsim: a flexible and scalable simulation
framework for performance evaluation
of industrial internet of things systems,”
The Journal of Supercomputing, vol. 74,
pp. 4385–4402, 2018.

[6] R. Almutairi, G. Bergami, and G. Morgan,
“Advancements and challenges in iot
simulators: A comprehensive review,” Sensors,
vol. 24, no. 5, p. 1511, 2024.

[7] M. Jarrah, “Modeling and simulation of
renewable energy sources in smart grid using
devs formalism,” Procedia Computer Science,
vol. 83, pp. 642–647, 2016.

[8] B. P. Zeigler, “Devs today: Recent advances in
discrete event-based information technology,”
in 11th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer
Telecommunications Systems, 2003. MASCOTS
2003., pp. 148–161, IEEE, 2003.

[9] M. Albataineh and M. Jarrah, “Devs-iot:
performance evaluation of smart home devices
network,” Multimedia Tools and Applications,
pp. 1–29, 2020.

[10] N. Akhtar, M. Niazi, F. Mustafa, and
A. Hussain, “A discrete event system
specification (devs)-based model of
consanguinity,” Journal of theoretical biology,
vol. 285, pp. 103–12, 06 2011.

[11] G. Barakat, B. Al-Duwairi, M. Jarrah, and
M. Jaradat, “Modeling and simulation of iot
botnet behaviors using devs,” in 2022 13th
International Conference on Information and
Communication Systems (ICICS), pp. 42–47,
2022.

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Author Contributions:
Ghena Barakat: Investigation, Writing original draft,
Formal analysis, Methodology, Conceptualization,
Visualization, Software.
Luca D’Agati: Methodology, Writing, review &
editing, Validation.
Giuseppe Tricomi: Methodology, Writing, review &
editing, Validation.
Francesco Longo: Supervision.
Antonio Puliafito: Supervision.
Giovanni Merlino: Supervision, Project
administration, Methodology.

Sources of Funding for the Research
This work is partially supported by ”JOULE”
receiving funds from the Italian Ministry of
University and Research PRIN project “JOint
ResoUrce Management in ReconfigurabLE I4.0
Factories (JOULE)” D.D. n. 104 del 2/2/2022.
Moreover, this work was partially supported also:
by project SERICS (PE00000014) under the PNRR
MUR program funded by the EU - NGEU, and by the
European Union under the Italian National Recovery
and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future”
(PE0000001 – program “RESTART”)

References:
[1] A. C. Panchal, V. M. Khadse, and P. N.

Mahalle, “Security issues in iiot: A
comprehensive survey of attacks on iiot

 
Conflict of Interest
The authors have no conflicts of interest to declare 

that are relevant to the content of this article. 
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.202

Ghena Barakat, Luca D’agati, 
Giuseppe Tricomi, Francesco Longo, 

Antonio Puliafito, Giovanni Merlino

E-ISSN: 2224-2899 2463 Volume 21, 2024


	Introduction
	Related Work
	IIOT Security Threats
	IoTNetSim
	"FS-IIoTSim"

	Descret Event System Specification
	Using DEVS to model and simulate IIoT systems

	Case Study Application
	Simple System Representation on DEVS
	Complex System Representation on DEVS

	Conclusion
	Blank Page



