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Abstract: As mobile devices become more and more powerful, applications generate a large number of computing tasks, and 

mobile devices themselves cannot meet the needs of users. This article proposes a computation offloading model in which 

execution units including mobile devices, edge server, and cloud server. Previous studies on joint optimization only considered 

tasks execution time and the energy consumption of mobile devices, and ignored the energy consumption of edge and cloud 

server. However, edge server and cloud server energy consumption have a significant impact on the final offloading decision. 

This paper comprehensively considers execution time and energy consumption of three execution units, and formulates task 

offloading decision as a single-objective optimization problem. Genetic algorithm with elitism preservation and random 

strategy is adopted to obtain optimal solution of the problem. At last, simulation experiments show that the proposed 

computation offloading model has lower fitness value compared with other computation offloading models. 
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1. Introduction 

In the era of Internet of things [1, 4, 13], smart mobile 

terminal devices have become an essential part of 

people's daily life. However, they have their limitations, 

such as limited battery capacity, low computing and 

storage capacity. Cloud computing [3, 7, 13, 16] with 

scalable computing and storage resource was adopted 

to solve these problems. But the delay of cloud 

computing is too large to meet the needs of the Internet 

of things, and then mobile edge computing [2, 11, 12, 

18] is utilized. Since mobile edge computing deploys 

servers closer to users, it can effectively reduce latency 

while extending smart device processing capacity. 

Zhang et al. [23] presented an iterative search 

algorithm combining interior penalty function with the 

difference of two convex functions/sets programming 

to obtain the optimal solution of mixed integer 

nonlinear problem for computation offloading and 

resource allocation. But the execution units only 

included mobile devices and edge server. Moreover, in 

the multiple mobile edge computing networks, final 

solutions obtained by iterative search algorithm is 

suboptimal rather than optimal. Liu et al. [8, 9] put 

forward a tensor-based representation model to 

comprehensively reflect the complex relationship of 

multiple influencing factors and cope with their 

heterogeneity. But how to improve the optimization 

efficiency and reduce the search space through 

tensor-based dimensionality reduction approach are 

complex. Hoang et al. [6] studied the mobile edge 

offloading scenario consisting of one mobile device 

with independent tasks and various remote edge 

devices providing computing resource. Then the user’s 

device can offload the tasks to available access points 

for edge computing. They jointly optimized task 

allocation decision and data compression ratio to 

minimize the execution time of total tasks and energy 

consumption of mobile device. Nevertheless, in their 

system model, there is only one terminal device with 

tasks, which is almost impossible to happen in real 

world. Xu et al. [20] analyzed execution time of tasks 

and energy consumption of the mobile devices, then 

formulated them as a multi-objective optimization 

problem. And they adopted non-dominated sorting 

genetic algorithm III to address the multi-objective 

optimization problem. However, they only focused on 

the execution of tasks and the energy consumption of 

mobile devices, and ignored the energy consumption of 

edge servers and cloud servers.  

In fact, the two-tier model already has related 

applications, like 5G, intelligent video surveillance 

system. In this paper, we collaboratively study 

computation offloading strategy under the scenario of 

mobile devices, edge server and cloud server. 

Compared with the two-tier system model of “cloud 

server and mobile device”, the three-tier system model 

we proposed has lower latency and smaller jitter, and is 

more suitable for latency-sensitive applications, such 

as automatic driving and intelligent medical treatment. 

And compared with the two-tier system model of 

“edge server and mobile device”, our system model has 

javascript:;


712                         The International Arab Journal of Information Technology, Vol. 18, No. 5, September 2021 

more powerful computing power, and has better effect 

for the application with large amount of computation. 

How to reduce execution time and energy consumption 

is our research object when processing tasks. The 

major works of this study are summarized as follows: 

1. We propose a three-layers system model for mobile 

edge computing, namely, mobile device layer, edge 

server layer and cloud server layer. Computation 

tasks generated by mobile devices can be executed 

locally, or offloaded to edge server or cloud server 

according to offloading strategy. What’s more, the 

time and energy consumption models are 

represented respectively. 

2. We formulate execution time and energy 

consumption as a single-objective function. Therein, 

execution time is the total time of all tasks, and 

energy consumption is execution and transmission 

energy including mobile devices, edge and cloud 

server. 

3. Genetic algorithm with random strategy and elitism 

preservation is used to resolve this single-objective 

optimization problem, and experiment result verifies 

its effectiveness. 

The remainder of this paper is organized as follows. 

System model and the problem formulation are 

proposed in sections 2 and 3, a computation offloading 

method of mobile edge computing is elaborated. 

Section 4 evaluates the proposed method. And section 

5 gives the conclusion and the future work. 

2. System Model and Problem Formulation 

2.1. System Model 

Figure 1 illustrates a system framework for mobile 

edge computing. In this framework, we consider a 

scenario where an edge server domain covers M 
mobile devices which are connected to the edge server 

by Local Area Network (LAN) [8] and a cloud server 

domain covers Q edge servers which are connected to 

the cloud server by Wide Area Network (WAN) [9]. In 

this paper, the computing tasks are available to be 

executed by the mobile devices, edge server or cloud 

server according to computation offloading strategy. 

And it is up to the mobile device to decide whether to 

offload tasks and how many computing tasks to offload. 

In addition, tasks are only offloaded to the edge server 

which covers the domain of devices generating these 

tasks, leaving aside the offloading of tasks between 

edge servers. 

cloud server

Internet

                                   

 

                                   

 

                                   

 

edge server edge server edge server

mobile devices

AP AP AP

mobile devices mobile devices  

Figure 1. System model of mobile edge computing. 

2.2. Task Model 

Suppose a mobile device has N  calculation tasks to 

be performed. The tasks, which are independent of 

each other, generated by the same mobile device can be 

formalized as a set. Let n

mt  (m = {1, 2, . . . , M}, n = 

{1,2, . . . , N}) be the nth task generated by the mth 

mobile device, where n

mt  is a triple that can be 

expressed as { , , ,n n n n

m m m mf u d l }, where n

mf  denotes the 

number of CPU cycles consumed to calculate the task, 
n

mu  is the amount of data size of task n

mt  when the 

task offloads to edge server or cloud server, n

md  

represents the amount of return data size of the 

calculation result, and n

ml  signifies the maximum 

deadline of task n

mt . 

A task can be executed locally, a core of edge server 

or a core of cloud server according to the offloading 

decision. For simplicity, every mobile device has only 

one core that has the same processing capacity. The 

core of mobile devices is equipped with a Dynamic 

Voltage and Frequency Scaling (DVFS) [10, 17] 

capability such that each core can operate at L different 

frequency levels with the corresponding L supply 

voltage levels. As mentioned above, the maximum 

operating frequency of the core is fmax, and there are L 

frequency scaling factors, ak,1<…<ak,l<…<aK,L. 

Therefore, actual operating frequency of mobile device 

can be denoted as f= ak,l
 
· fmax. The power of mobile 

device can be expressed as Plc= αm . f γ, in this paper, 

the value of γ is equal to 2 [10]. In addition, when 

mobile device is in the task transmission stage, the 

power consumption of the mobile device can be 

expressed as Plt. And since the power consumption of 

the terminal in idle state is inevitable, it is ignored in 

this paper. 

If task n

mt  is offloaded to edge server on the basis 

of offloading strategy, there are three phases in 

sequence associated with the execution of task n

mt :  

1. Wireless transmission phase. 

2. Edge computing phase.  
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3. Wireless transmission return phase.  

In the wireless transmission phase, the input data of 

task n

mt  is sent to edge server through wireless 

channel. In the edge computing phase, task is executed 

in edge server. In some applications, output data sizes 

are near to input ones, such as infotainment app, heavy 

compare app and so on. It is unreasonable to ignore the 

amount of data returned. In wireless transmission 

return phase, the mobile device receives the output data 

of task from the edge server through the wireless 

channel. And edge server transmits the output data of 

task back to the mobile device as long as it finishes 

processing task n

mt . We use Pet to denote the power 

consumption of edge server in wireless transmission 

phase for sending or receiving data between the mobile 

and edge server, and Pec to denote the power 

consumption of edge server in edge computing phase. 

If task n

mt  is offloaded to cloud server according to 

offloading decision, there are five phases in sequence 

associated with the execution of task n

mt :  

1. Wireless transmission phase. 

2. Wired transmission phase.  

3. Cloud computing phase.  

4. Wired transmission return phase. 

5. Wireless transmission return phase.  

Wireless transmission and return phase are same as the 

process mentioned above. The wired transmission and 

wired return phases are respectively the process of 

transferring task data from edge server to cloud server 

and return data from cloud service to edge server 

through the wired channels. We use Ped 
to represent the 

power consumption of edge server in wired 

transmission and return phase. Since the cloud server 

may handle multiple tasks delivered by multiple edge 

servers at the same time, it is not accurate to calculate 

the energy consumption of cloud server according to 

the transmission or running power of the server. In this 

paper, we use energy consumption Wcc to denote the 

energy consumption of cloud server for executing 1 

Central Processing Unit (CPU) cycle task, and Wct to 

represent the energy consumption of cloud server for 

transmitting 1bit data. 

2.3. Execution Time and Energy Consumption 

Model 

Next, we will formulate execution time and energy 

consumption for tasks to be performed on mobile 

devices, edge server, and cloud server, respectively [18, 

23].  

2.3.1. Execution Time Model 

In this paper, 0n

mx   if task is assigned to be executed 

locally, and if task is offloaded to edge or cloud server, 

1n

mx  .Then the execution time of task n

mt  executed 

on the mobile device is 

 
n

n m
l m

max

f
T t

f
   

When task n

mt  is assigned edge server for execution, 

task execution time  n

e mT t  includes the time of task 

calculation on edge server  n

ec mT t  and the time of 

data transmission through wireless channel  n

et mT t , and 

 n

et mT t  involves data transmission time and data 

return time. Then  n

et mT t ,  n

ec mT t  and  n

e mT t  can be 

respectively expressed as 

 
n n

n m m
et m

l l

u d
T t

c c
 

 

 
n

n m
ec m

mec

f
T t

f


  

     n n n

e m et m ec mT t T t T t   

Where cl is the bandwidth of wireless channel. For 

simplicity, it is same to upload or download. fmec is 

used to represent processing capacity of edge server, 

which is measured by CPU cycles. 

If task n

mt  is executed on cloud server according to 

offloading decision, task execution time includes five 

parts: wireless uploading time, wired uploading time, 

task execution time, wired downloading time and 

wireless downloading time. Let cd be the bandwidth of 

wired channel, then task execution time  n

c mT t  can 

be divided into three parts: the time of data 

transmission through wireless channel  n

ct mT t , the 

time of data transmission through wired channel 

 n

cd mT t , and the time of task calculation on cloud 

server  n

cc mT t , they are severally represented by 

 
n n

n m m
ct m

l l

u d
T t

c c
 

  

 
n n

n m m
cd m

d d

u d
T t

c c
    

 
n

n m
cc m

cc

f
T t

f


  

       n n n n

c m ct m cd m cc mT t T t T t T t    

For the computing task n

mt , adopting computation 

offloading strategy n

mx , n

my , the execution time n

mTL  

of task n

mt  can be denoted by 

 

 

 

, 0, 0

, 1, 0

, 1, 1

n n n

l m m m

n n n n

m e m m m

n n n

c m m m

T t x y

TL T t x y

T t x y

  



  


 

 

Where 0, 0n n

m mx y   represents n

mt  is executed on 

mobile device, 1, 0n n

m mx y   indicates n

mt  is 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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offloaded to edge server, and 1, 1n n

m mx y   denotes 
n

mt  is offloaded to cloud server. 

Based on the offloading decision, TL is the execution 

time of all tasks assigned to be executed locally, TE 

denotes the time it takes to complete all tasks offloaded 

to edge server, and TC is the time to execute all tasks 

offloaded to cloud server. 

     
1 1

1 1
M N

n n n

L m m l m

m n

T x y T t
 

      

   
1 1

1
M N

n n n

E m m e m

m n

T x y T t
 

      

 
1 1

M N
n n n

C m m c m

m n

T x y T t
 

  
  

To sum up, the total execution time Ttotal of all tasks 

can be expressed as 

total L E CT T T T     

2.3.2. Energy Consumption Model 

Reducing energy consumption of the whole system is 

another goal of our study. 

For task n

mt , energy consumption of mobile device 

 n

l mE t  can be denoted by 

       

   

1 1n n n n n

l m m lc l m m m

n n n n

lt et m m m lt ct m

E t x P T t x y

P T t x y P T t

      

     

 

For task n

mt , energy consumption of edge server  n

e mE t , 

can be calculated by  

     

     

1

1

n n n n n

e m m m et et m m

n n n n n

m ec ec m m m ed cd m

E t x y P T t x

y P T t x y P T t

     

       

 

And for task n

mt , energy consumption of cloud server 

 n

c mE t , can be computed by 

 

 +

n n n n

c m m m cc m

n n n n

m m ct m m

E t x y W f

x y W u d

   

   

 

Therefore, the total energy of all tasks can be 

formulated as 

      
1 1

M N
n n n

total l m e m c m

m n

E E t E t E t
 

    

2.4. Problem Formulation 

In this paper, we intend to shorten the execution time, 

given in (13) and save the energy consumption of the 

whole system, presented in (17). The formalized 

problem can be defined as 

min  1total totalF T E       

s. t. 

      
   

, ,

1,2, , , 1,2, ,

n n n n

l m e m c m mmax T t T t T t l

m M n N

 

   

 0,1   

        , 0,0 , 1,0 , 1,1n n

m mx y    

It is our optimization objective to achieve overall 

equilibrium state of calculation time and energy 

consumption of various devices. By formula (18), the 

multi-objective optimization problem can be 

transformed into a single-objective optimization 

problem. And the coefficient α can be adjusted 

according to the different needs of users. When α 

equals to 0, it is mainly to obtain the minimum value of 

energy consumption of the whole system, while α 

equals to 1, it is to find the minimum value of the 

overall execution time. 

3. Computation Offloading Method 

In this section, computation offloading decision of M·N 

tasks generated by M mobile devices is defined as a 

single-objective optimization problem of shortening 

the executing time of tasks and saving the energy 

consumption of all devices, including mobile devices, 

edge server, and cloud server.  

Firstly, we randomly encode the computation 

offloading strategy in the form of “00”, “10”, “11”. 

Then the fitness function of optimization objective as 

well as constraints is formulated. What's more, genetic 

algorithm with elitism preservation and random 

strategy is adopted to obtain optimal solution of the 

problem. 

In order to improve the shortcoming that genetic 

algorithm [22] is prone to fall into the local optimal 

solution, generation of offspring in this paper includes 

three parts: parent generation selected by roulette, elite 

individual inherited from the parent generation and a 

group of randomly generated solutions. Besides, we 

randomly choose single point, midpoint, two-point or 

multi-point crossover at the stage of genetic crossover. 

And in the phase of mutation, the strategy of random 

variation number is used to increase the ability of 

getting globally optimal solution of genetic algorithm. 

The purpose of this paper is to get the minimum fitness 

value, so roulette wheel selection operator changes. 

The less the fitness value is, the more likely to be 

chosen. Cumulative fitness is expressed as sum, the 

total number of chromosomes is denoted as I, and Fi is 

used to represent the fitness value of ith chromosome. 

Then the probability of ith chromosome being selected 

can be expressed as 

 
 , 1,2, ,

1

i
i

sum F
PR i I

sum I


 

 
 

The specific process is as follow: 

Algorithm1: Genetic algorithm with elitism preservation and 

random strategy 

Input: 

population: I, 

number of iterations: T,  

(10) 

(11) 

(12) 

(13) (13) 

(14) 

(15) 

(16) 

(17) 

(19) 

(18) 

(20) 

(21) 

(22) 
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crossover probability: c,  

mutation probability: m,  

computational task set: 

 1 2 1 2 1 2

1 1 1 2 2 2, , , , , , , , , , , ,N N N

M M MTS t t t t t t t t t   

operating frequency: fmax, fmec, fcc,  

power consumption of the device: Plc, Plt, Pet, Pec, Ped, Pcc, Pct  

channel bandwidth: cl, cd  

parameter coefficient: α 

generate an initial population Pop by random method 

do { 

calculate function value of each chromosome in the population 

by (18), and it satisfies the constraints (19-21) 

initialize the null population newPop 

save the fitness value of minimum fitness and the offloading 

decision at this fitness 

do { 

two individuals (p1, p2) are selected from the population by 

section operator 

if (random (0, 1) < c) { 

randomly generate integers r from 0 to 3 

if (r = 0) { 

single point crossover 

} else if (r = 1) { 

midpoint crossover 

} else if (r = 2) { 

two-point crossover 

} else (r = 3) { 

multi-point crossover 

} 

} 

if (random (0, 1) < m) { 

randomly generate integers s1 from 1 to the length of 

chromosome 

randomly generate integers s2 from 1 to the length of 

chromosome 

for p1 randomly select s1 positions for mutation operation 

for p2 randomly select s1 positions for mutation operation 

} 

add these two new individuals to newPop 

} until (I offspring are created) 

replace Pop with newPop 

} until (meet the termination conditions) 

return optimal offloading decision, execution time, energy 

consumption and optimal fitness. 

4. Experimental Evaluation 

In this part, we evaluate the performance of the 

proposed computation offloading method, and compare 

with other methods by comprehensive simulations and 

experiments. 

In the simulation experiment, execution time, 

energy consumption, and the fitness value of different 

task scheduling schemes are compared. And Some 

experimental parameters were set according to 

references [15, 18]. 

The parameter setting is shown in Tables 1 and 2. 

 

 

 

 

 

 

 

Table 1. Simulation parameters. 

Parameter Value Parameter Value 
n

mf  [1000,15000]M Plt
 
 0.2V 

n

mu  [50,700] Kbit Pec 1V 

n

md  [20,700] Kbit Pet
 

 0.4V 

 fmax

 
0.4GHZ Ped 0.5V 

fmec 
 

1.5GHZ Wcc

 
10-10W/cycle 

fcc 
 

4GHZ Wct

 
5 10-7W/bit 

αm

 
3.125 cl

 
100Kbps 

Plc

 
0.5V cd

 
200Kbps 

Table 2. Parameters of the genetic algorithm. 

parameter value parameter value 

c 0.8 T 100 

m 0.3 α 0.5 

We compare our proposed offloading method (The 

proposed) with local execution (Local), local and edge 

collaborative offloading decision [5] (Local-Edge), 

local and cloud collaborative offloading strategy [19] 

(Local-Cloud). There are ten mobile devices which in 

the same edge server domain. Every mobile device 

generates one to ten computation tasks. 

In Figure 2, execution time increases with increase 

of the number of tasks. When the task is executed 

locally, the execution time is significantly higher than 

that of other methods. That is because mobile devices 

have little computing capacity and cannot complete the 

computing tasks in a timely and efficient manner when 

a large number of tasks are performed locally. 

Furthermore, Local-Cloud takes longer to complete 

tasks than Local-Edge because the cloud server is 

farther away from the user than the edge server. And 

the method we proposed takes the least time. 

 

 

Figure 2. Execution time of different methods. 

And we can see from Figure 3, energy consumption 

increases with the increase of the number of tasks, too. 

When tasks are executed locally, the total energy 

consumption is that of mobile devices. Tasks 

performed locally cost the most energy, and excessive 

energy consumption of mobile devices will affect user 

experience and shorten battery life of terminal devices. 

Due that the calculation and transmission energy 

consumption are calculated separately according to the 

tasks, and the energy consumption of the equipment 

itself is not included, Local-Cloud costs less energy 

than Local-Edge. 
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Figure 3. Energy consumption of different methods. 

According to the results of previous experiments, 

both execution time and energy consumption increase 

with the number of tasks, then as the number of tasks 

increases, so does the total fitness value. The same 

result can be seen in Figure 4. And the model of 

Local-Mec works better than Local-Cloud, our 

proposed model is best in these offloading methods. 

 

Figure 4. Fitness of different methods. 

As shown in Figure 5, the fitness value of our 

proposed computation offloading model is lower than 

other methods When α is taking different values. It 

fully proves that our method is superior to other 

methods. Users can modify the value of coefficient α 

according to different requirements. 

 

Figure 5. Fitness of different value of  . 

Table 3 shows the fitness values of different 

offloading strategies when the number of tasks is 20, 

40, 60, 80, and 100 respectively, and α=0.5. From 

Table 3, we can see that the offloading strategy 

proposed in this paper can obtain a smaller fitness 

value. Table 4 shows the fitness values of different 

offloading strategies when the number of tasks is 100 

and α is 0.1, 0.3, 0.5, 0.7, and 0.9 respectively. From 

Table 4, we can see that the offloading strategy 

proposed in this paper is better than other offloading 

strategies. 

Table 3. Fitness of different computing offloading model. 

Task number 

 

Algorithm  

20 40 60 80 100 

The proposed 116.11 265.25 391.83 498.14 593.98 

Local-Mec 126.23 295.10 434.15 553.45 652.55 

Local 178.50 435.42 591.75 720.75 840.00 

Local-Cloud 148.58 315.73 494.78 631.03 742.34 

Table 4. Fitness of different computing offloading model. 

  

Algorithm 
0.1 0.3 0.5 0.7 0.9 

The proposed 463.26 535.47 599.09 648.5 716.56 

Local-Mec 537.01 585.45 643.65 705.49 742.28 

Local 616.15 728.18 840.34 952.82 1064.04 

Local-Cloud 554.12 650.8 743.9 840.43 949.11 

 
a) The task distribution of the 50 tasks. 

 
b) The task distribution of the 100 tasks. 

Figure 6. The distribution of task allocation. 

When =0.5 , the number of tasks generated by per 

mobile device is 5, the task distribution in different 

allocation scheme is shown in Figure 6-a). Except that 

the number of tasks is 10, task assignments are 

illustrated in Figure 6-b). As the number of tasks 

generated by mobile devices increases, the proportion 

of tasks assigned to terminal devices decreases. This is 

because mobile devices have limited processing 

capacity and cannot meet the maximum delay 

requirement when the number of tasks increases. As a 

result, more tasks are assigned to edge or cloud server 

for execution. 

In order to verify the superiority of our proposed 

improved genetic algorithm, we will compare the 

improved algorithm with binary Particle Swarm 

Optimization Algorithm (BPSO) [14] and ant Colony 

Optimization (ACO) [21] on the basis of the 

three-layer computation offloading model proposed in 

this paper. α is equal to 0.5. 
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Figure 7. Comparison of different algorithms. 

As can be seen from the Figure 7, with the 

increasing number of tasks, the fitness value is also 

increasing. And the algorithm we proposed is better 

than other comparison algorithms in general under the 

same conditions. When the number of tasks is 

relatively small, the effect is not very obvious, and 

with the increasing number of tasks, the proposed 

algorithm is more efficient. 

Table 5. Fitness value of the different algorithms. 

        Time  

Algorithm 
1 2 3 4 5 

GA 595.23 587.32 594.63 590.46 589.22 

BPSO 622.84 619.46 625.81 618.89 620.81 

ACO 662.35 654.37 667.13 659.37 664.25 

For the problem that the algorithm is sensitive to the 

initial value, we repeated the experiment for many 

times. In the process of experiment, the initial value is 

generated randomly, and the probability of “00”, “10” 

and “11” is the same. When the number of tasks is 100, 

α=0.5, the fitness values of different algorithms are 

randomly selected for 5 times, as shown in Table 5. 

Although the initial values of algorithms are different, 

they have little influence on the experiment results in 

the application of task scheduling. Besides, our 

strategy for selecting initial values is to randomly 

generate within the range of values. 

5. Conclusions 

This paper proposes a system model, which 

comprehensively considers calculation, transmission 

time as well as energy consumption of mobile devices, 

edge and cloud server, and jointly carry out tasks 

offloading decision. In addition, genetic algorithm with 

elitism preservation and random strategy is used to find 

optimal solution. Experiment results show that the 

proposed method is stable as the value of   changes. 

And it can provide a computational offloading scheme 

with optimal fitness. The algorithm used in this paper 

is genetic algorithm, the complexity of this algorithm is 

T(n)=O(N·T) ͌ O(n2), Where N is the population size and 

T is the maximum number of iterations. In practice, the 

two-tier model [2, 3, 13, 18] already has related 

applications, like 5G, intelligent video surveillance 

system. The hardware conditions of the scheme can be 

met, but the software needs further research and 

development, and the algorithm used is not very 

complex, so it is not difficult to use in practice. In this 

paper, the tasks have no dependencies with each other. 

However, in the actual calculation, a large proportion 

of tasks are related. Next, we will consider the time 

and energy balance of dependent tasks. 
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