
The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019 961

Mining Recent Maximal Frequent Itemsets Over

Data Streams with Sliding Window

Saihua Cai1, Shangbo Hao1, Ruizhi Sun1, and Gang Wu2
1College of Information and Electrical Engineering, China Agricultural University, China

2Secretary of Computer Science Department, Tarim University, China

Abstract: The huge number of data streams makes it impossible to mine recent frequent itemsets. Due to the maximal frequent

itemsets can perfectly imply all the frequent itemsets and the number is much smaller, therefore, the time cost and the memory

usage for mining maximal frequent itemsets are much more efficient. This paper proposes an improved method called Recent

Maximal Frequent Itemsets Mining (RMFIsM) to mine recent maximal frequent itemsets over data streams with sliding

window. The RMFIsM method uses two matrixes to store the information of data streams, the first matrix stores the

information of each transaction and the second one stores the frequent 1-itemsets. The frequent p-itemsets are mined with

“extension” process of frequent 2-itemsets, and the maximal frequent itemsets are obtained by deleting the sub-itemsets of

long frequent itemsets. Finally, the performance of the RMFIsM method is conducted by a series of experiments, the results

show that the proposed RMFIsM method can mine recent maximal frequent itemsets efficiently.

Keywords: Data streams, recent maximal frequent itemsets, sliding window, matrix structure.

Received November 16, 2016; accepted April 25, 2018

1. Introduction

The scale of collected data information shows an

explosive growth in various domains with the rapid

development of Internet of Things (IoT) technology,

information technology and network technology [1]. In

order to analyze the collected data information better,

the association rules [3] among data should to be

mined effectively, and the generation of frequent

itemsets is the most critical technique and procedure in

mining association rules. The frequent itemsets [7, 12]

mean the itemsets whose support is not smaller than

predefined minimum support (denoted as min_sup). In

general, the number of frequent itemsets generated by

most frequent itemsets mining methods is very large

because all frequent itemsets of a given dataset need to

be mined, it can easily consume the memory usage.

Due to the number of maximal frequent itemsets is

relatively smaller and they can imply all frequent

itemsets perfectly, in this case, the efficiency of time

cost for mining maximal frequent itemsets is very good

and the memory usage is also much smaller. Therefore,

the problems of mining frequent itemsets can be

transformed into the operation of mining maximal

frequent itemsets.

The massive use of sensors makes the collected data

exist in the form of data streams. One common

definition of data streams is that it is made up of

massive unbounded sequences with a large amount of

data elements and existed in the form of continuous

streams [11]. Data streams are generated in many

aspects of applications, such as: sensor data streams

are generated from sensor networks [4], online

transaction data streams are generated from shops,

network data streams are generated from website, etc.

Due to people need to grasp the relevance of the

information generated from online applications in real

time, the mining process should be treated

immediately.

The differences of data streams mining and static

data mining are list as follows [8]. First, each element

of data streams is allowed to be checked for most once.

Second, memory usage of the analysis for data streams

should be restricted finitely although new data

elements generated continuously. Third, the newly

generation of the data should be processed as fast as

possible. Fourth, the up-to-data analysis result of data

streams should be instantly available when user

requested. To satisfy these requirements, the method of

data streams mining should indulge the rapidity and the

memory usage should be as small as possible.

However, the huge number of data streams makes it

impossible to store all the data into main memory.

Moreover, previous methods that studied for mining

static datasets are not feasible for mining data streams,

in this case, new structures and mining methods are

eager for using to support one-time and continuous

mining process. In this paper, we use the matrix

structure to store the data information of data structures,

and then propose an improved method called Recent

Maximal Frequent Itemsets Mining (RMFIsM) to mine

recent maximal frequent itemsets over data streams.

The rest of this paper is organized as follows. The

related work is introduced in section 2. The definitions

and problems statement are given in section 3, the

structure and main idea of our proposed maximal

962 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

frequent itemsets mining method are described in

section 4. The experimental analysis is presented in

section 5, and the conclusion is given in section 6.

2. Related Work

At present, several methods have proposed to mine the

frequent itemsets over data streams. The models of

frequent itemsets mining can be divided into:

1. Landmark window model.

2. Damped window model.

3. Sliding window model according to the processing

models of data streams.

For landmark window model, the researchers always

focus on the data in the entire data streams, and get the

global frequent itemsets through the analysis of

historical data. Li et al. [8] referred to Apriori

algorithm to present a method called Data Stream

Mining for Maximal Frequent Itemsets (DSM-MFI), it

used prefix tree structure to store the data information

of data streams, and then the maximal frequent

itemsets mining process was realized with the

constructed prefix tree structure. INSTANT method

was presented by Mao et al. [10], it defined some sub-

operators of itemsets and maintained itemsets with

different level of support in memory, the advantage of

INSTANT method was that the maximal frequent

itemsets could be displayed directly to user through a

serious of sub-operations when the new transaction

arriving.

For damped window model, each transaction has a

corresponding value and the value decreases gradually

with the increase of time, therefore, preserve and

reduce the related information of historical data need to

be considered in the control of the value. Chang and

Lee [2] developed a method called estDec in 2003, this

method examined each transaction in turn without the

generation of any candidate, the occurred count of the

itemsets that appeared in each transaction was

maintained with a prefix-tree structure, and the effect

of old transaction on current mining result was

diminished by defining the parameter called

debilitating factor. Lin et al. [9] presented the Mining

Recently Frequent Itemsets with Variable Support over

Data Streams (MRVSDS) algorithm to store frequent

itemsets in current window into PFI-tree structure, the

itemsets were deleted from PFI-tree when the degree of

the transaction was less than min_sup. In addition, the

authors also designed the Decaying Synopsis Vector

(DSYV) structure to store the processed transaction,

and the frequent itemsets were found by re-mining the

transactions from DSYV when the current itemsets’

support was less than historical min_sup.

For sliding window model, the focus is always on

the recent transactions, therefore, the mining results are

the local frequent itemsets over a certain period of

time. Yang et al. [13] designed an efficient algorithm

named DSM-Miner to mine maximal frequent itemsets

over data streams, it used appropriate method to reduce

the effects of old transactions, and then the Sliding

Window Maximum frequent pattern Tree (called

SWM-Tree) was proposed to maintain the latest

pattern’s information. In the process of mining

maximal frequent patterns, DSM-Miner used

appropriate pruning operations, calculation pattern of

bit items group and “depth-first” search strategies, the

experimental results showed that DSM-Miner was

better in time performance and memory usage. A new

algorithm that based on the prefix-tree data structure

was proposed by Deypir et al. [5] to find and update

frequent itemsets of the windows, a batch of

transactions were used as the unit of insertion and

deletion within the window to improve the

performance, moreover, an effective traversal strategy

for the prefix-tree and the suitable representation for

each batch of transactions were used in the algorithm,

the required information in each node of the prefix-tree

was stored and the old batch of transactions were

deleted directly.

However, some disadvantages also have existed in

the proposed methods. The drawbacks of INSTANT

algorithm [10] were the amount of arrays designed for

maintaining all maximal frequent itemsets was very

large and the cost of memory usage was also very

expensive, moreover, no efficient superset or subset

were used to check the newly identified maximal

frequent itemsets of each array, therefore, the

comparison times were increased very fast and the

memory usage was enlarged rapidly when the average

length of the transactions became longer.

3. Definitions And Problems Statement

In this section, we first provide some formal

definitions of the important terms used in this paper

and then give the problems statement.

3.1. Definitions

Let I= {i1, i2, i3,…, im} be a finite set of m distinct

items. The data streams DS= [T1, T2, T3, …, Tn), where

each transaction Tj∈DS is a subset of I with a unique

identifier TID. If the relation of itemset α and β

is  , α is called the sub-itemset of β and β is called

the super-itemset of α. If the length of itemset is k, it is

called k-itemset. Table 1 shows an example of data

stream as the running example to clearly explain the

definitions. In this example, assume that min_sup is

0.33 and the size of sliding window is 6.

Mining Recent Maximal Frequent Itemsets Over Data Streams with Sliding Window 963

Table 1. An example of data streams.

TID Transaction TID Transaction

T1 {i1,i2,i3} T6 {i1,i2,i3,i5,i6}

T2 {i1,i2,i4} T7 {i1,i2,i5}

T3 {i2,i3,i5} T8 {i1,i2,i3,i4}

T4 {i1,i2,i3,i5} T9 {i2,i3,i5}

T5 {i1,i3,i5} … ……

 Support: The frequency of itemset xi in DS is

defined as support, that is, support ({xi})= count(xi,

DS) / |SW|, where count(xi, DS) is the number of

contained itemset xi in DS and |SW| is the size of

sliding window.

For example, itemset {i1} is existing in T1, T2, T4, T5

and T6 in current sliding window, therefore, support

({i1}) = 5/6. Itemset {i1, i2} is existing in T1, T2, T4 and

T6 in current sliding window, therefore, support ({i1,

i2})= 4/6.

 Frequent Itemsets (FIs): The frequent itemsets mean

that the itemsets’ support is not less than the

predefined minimal support threshold min_sup.

For example, itemset {i1, i3} is existing in T1, T4, T5

and T6, support ({i1, i3})=4/6>0.33, therefore, {i1,i3} is

a frequent itemset.

 Infrequent Itemsets (IFIs): The infrequent itemsets

mean that the itemsets’ support is less than the

predefined minimal support threshold min_sup.

For example, itemset {i2, i4} is existing in T2,

support ({i2, i4})=1/6<0.33, therefore, {i2,i4} is an

infrequent itemset.

 Maximal Frequent Itemsets (MFIs): The itemsets are

the maximal frequent itemsets should satisfy the

following two conditions:

1. They are frequent itemsets.

2. No super-itemset of them is frequent.

For example, itemset {i4} is not a MFI due to support

({i4})=1/6<0.33. Itemset {i1} is not a MFI though

support ({i1}) = 5/6>0.33, the reason is that its super-

itemset {i1, i2} is frequent. Itemset {i1, i2, i3, i5} is a

MFI due to support ({i1, i2, i3, i5})=2/6>0.33 and no

super-itemset of it is frequent.

 Dictionary order: If the appeared sequence of

itemset A is earlier than itemset B in dictionary, the

dictionary order of itemset A and itemset B can be

recorded as: A » B. Similarly, the next itemsets can

be recored as: A » ABD » ACD » BD in dictionary

order.

3.2. Problems Statement

For mining useful information over data streams, the

final mining results should be send to users

immediately, it means that any useful data should be

processed in an efficient way, in this case, the real-time

response is very important to users. In addition, the

huge nature of data streams makes it impossible to

store all the data information into main memory or

even in secondary storage due to they can easily

consume all resources of system and bring difficulties

to the underlying mining tasks.

Specifically, the DSM-MFI method [8] took the

structure of summary frequent itemset forest to store

every sub-projection of affairs, and two main problems

of DSM-MFI method could be included as:

1. Large memory storage was wasted to store the sub-

projections for a part of sub-projections were not

frequent.

2. Much time was wasted for deleting the sub-

projections from summary frequent itemset forest to

achieve the lower memory occupancy.

The size of prefix tree that generated by estDec method

[2] was very large with the increasing number of

frequent itemsets, and more seriously, the estDec

method would stop working once the prefix tree

occupies full of the memory. The drawback of TMFI

method [6] was the infrequent 1-itemsets were also

stored in matrix structure, therefore, some meaningless

“extension” operation of infrequent itemsets also were

conducted to gain longer itemsets.

In general, the time cost, the memory storage and

the accuracy rate of mining process are the most

important problems we should to deal with.

4. Mining Recent Maximal Frequent

Itemsets

In this section, we refer TMFI method [6] to propose

an improved method called RMFIsM to mine the

recent MFIs over data streams. The RMFIsM method

uses two matrixes (record as: matrix A and frequent

matrix B) to store the information of each item, and the

infrequent itemsets need to be deleted from matrix

immediately to reduce the time cost and memory usage

based on downward closure property.

4.1. The Structure of RMFIsM Method

Matrix A is constructed to store the information of

each item of data streams, and frequent matrix B is

built to record the information of frequent 1-itemsets.

The rows of matrix A stand for the information of

transactions Ti and the columns of matrix A stand for

the information of each item of {i1, i2, i3,…, im}, the

size of matrix A is (n+1)*m, where row (n+1) records

the support of each item. Specifically, the transactions

are scanned in order when the current sliding window

is not full, and Ad,k is marked as 1 if item ik is appeared

in transaction Td, otherwise, Ad,k is marked as 0.

In order to effectively mine the recent information

of data streams, old transactions need to be replaced by

new ones directly. The position of new transaction Td

964 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

is calculated by Equation 1, where n is the size of

sliding window, and the information of transaction Td

is recorded in row n if the result of pos is 0.

%pos d n

Frequent matrix B is built to store the data information

of frequent 1-itemsets in dictionary order, the original

element of matrix B is 0 and the real size of matrix B is

(k-1)*(k-1), where k is the number of frequent 1-

itemsets. The construction process of matrix B is

shown as follows: for frequent 1-itemsets ip and iq with

the order of ip » iq, doing “logic and” operation process

for every element of columns p and q in matrix A, Bp,q

is marked as 1 if the result of “logic and” for itemset

{ip,iq} is not less than min_sup, otherwise, Bp,q is

marked as 0.

Matrix A and frequent matrix B are the basis for

mining maximal frequent itemsets, the pseudo-code of

constructing matrix A and frequent matrix B is shown

in Algorithm 1.

Algorithm 1: Construct matrix A and frequent matrix B

Input: Data streams, n(the maximal |SW|), m(maximal number

of different items), min_sup

Output: matrix A, frequent matrix B

for (|SW|=1 to n)

{

 for (k=1 to m)

 {

 if (ik in Td)

 Ad,k=1

 else

 Ad,k=0

 }

}

return matrix A

for (k=1 to m)

{

 if (support(ik) ≥min_sup)

 add ik to matrix B

 else

 delete ik

}

for (k=1 to |B|)

{

 for (s=k+1 to |B|)

 {

 if (support({ik,is}) ≥min_sup)

 Bk,s=1

 else

 Bk,s=0

 }

}

return matrix B

4.2. Downward Closure Property

The downward closure property is an important part of

RMFIsM method, it is the foundation of pruning

strategy for reducing the meaningless “extension”

process to save the time cost and memory usage.

 Theorem 1. If Xk is a frequent k-itemset, then, any

nonempty sub-itemset Xk-1 of Xk is also frequent.

 Proof. Since
1k k

X X

 , the transactions contains

itemset Xk must contains the itemset Xk-1, that is:

() ()
k k-1

TID X TID X , it follows that: support(Xk-1)≥

support(Xk)≥ min_sup. Hence, any nonempty sub-

itemset Xk-1 of Xk is also frequent if Xk is a frequent

itemset.

 Theorem 2. If Xk is an infrequent k-itemset, then, any

super-itemset Xk+1 of Xk is also infrequent.

 Proof. Since
1k k

X X


 , the transactions contains

itemset Xk+1 must contains the itemset Xk, that is:
1

() ()
k k

TID X TID X


 , it follows that:

support(Xk+1)≤ support(Xk)≤ min_sup. Hence, any

super-itemset Xk+1 of Xk is also infrequent if Xk is an

infrequent itemset.

It can be easily known from downward closure

property that the “extension” process of infrequent

itemsets is meaningless, thus, the downward closure

property should to be considered in every step of

maximal frequent itemsets mining. More specifically,

the infrequent itemsets that existing in matrix A should

not add into frequent matrix B as the basic element of

“extension” process for RMFIsM method, that is, if 1-

itemset ip is an infrequent itemset, its super-itemsets

are impossible being the frequent itemsets, therefore, ip

should not appear in matrix B to reduce the time cost

and memory usage in both constructing matrix B and

calculating the support value of these meaningless

extended itemsets.

4.3. The Main Idea of RMFIsM Method

The main idea of RMFIsM method can be included

into next three parts:

1. Extend the short frequent itemsets into long itemsets.

2. Calculate the support value for the extended long

itemsets and save the frequent long itemsets into

maximal frequent itemsets library MFIs_L.

3. check and move the frequent sub-itemsets of the

extended frequent long itemsets out from MFIs_L.

Note that, each itemset need to be checked before

“extension” process to discard the infrequent

itemsets to further improve the mining efficiency.

Once matrix A is constructed and each element is

written into matrix A, the support value of each item is

calculated and written in row (n+1), and the frequent

1-itemsets are stored into MFIs_L. After constructing

matrix B and the corresponding items are written into

matrix B, the frequent 2-itemsets where the item is

marked in 1 are stored into MFIs_L, and then all 1-

itemsets are checked and each sub-itemset of frequent

2-itemsets are moved out from MFIs_L.

If itemset {ik1, ik2, …, ikp} is a frequent p-itemset, the

“extension” process of frequent p-itemset into (p+1)-

(1)

Mining Recent Maximal Frequent Itemsets Over Data Streams with Sliding Window 965

itemset can be summarized as follows. Frequent p-

itemset {ik1,ik2,…,ikp} can be extended into (p+1)-

itemset if and only if every B(ky,k(p+1))= 1, where y∈
[1, p]. Next, doing “logic and” operation for the

corresponding (p+1) column to calculate the support

value, itemset {ik1,ik2,…,ikp,ik(p+1)} is retained and stored

into MFIs_L if its support value is not less than

min_sup, otherwise, it is discarded directly. If the

current extended (p+1)-itemset is frequent, all p-

itemsets are checked and each sub-itemset is moved

out from MFIs_L. Repeat the above “extension”

operation until no itemset can be further extended. The

specific pseudo-code is shown in Algorithm 2.

Algorithm 2: RMFIsM

Input: Frequent matrix B

Output: MFIs

call Algorithm 1

delete each frequent sub-itemsets of frequent 2-itemsets

for (k=1 to |B|)

{

 foreach (B(ky,k(p+1))=1) // y∈[1,p]

 {

 extend p-itemset of {ik1,…,ikp} into (p+1)-itemset of

{ik1,…,ikp,ik(p+1)}

 calculate support({ik1,…,ikp,ik(p+1)})

 if support({ik1,…,ikp,ik(p+1)}) ≥min_sup

 add {ik1,…,ikp,ik(p+1)} into MFIs_L

 move every sub-itemsets of {ik1,…,ikp,ik(p+1)} out from

MFIs_L

 else

 delete {ik1,…,ikp,ik(p+1)}

 }

}

return MFIs

4.4. An Example of RMFIsM Method

In order to describe our proposed RMFIsM method

better, we take the example that shown in Table 1 to

illustrate the specific mining process of maximal

frequent itemsets, the min_sup is set into 0.33 and the

size of sliding window is set into 6.

Matrix A is constructed and each data information

of transactions is marked into when they pass the

sliding window, the original information of each item

(T1-T6) is shown in Figure 1-a. When the sliding

window is full, we built matrix B and implement

maximal frequent mining process. When the new

transactions flowing into the sliding window, the oldest

transaction is covered by the latest one directly based

on Equation (1) to get better time efficiency. Figure 1

shows the change process of matrix A that T1 is

covered by T7 and T2 is covered by T8, the new matrix

A is shown in Figure 1-b.

1

2

3

4

5

6

1 1 1 0 0 0

1 1 0 1 0 0

0 1 1 0 1 0

1 1 1 0 1 0

1 0 1 0 1 0

1 1 1 0 1 1

 0.83 0.83 0.83 0.17 0.67 0.17

1 2 3 4 5 6

support

i i i i i i

T

T

T

T

T

T

 
 
 
 
 
 
 
 
 
  

a) Original matrix structure.

7

8

3

4

5

6

1 1 0 0 1 0

1 1 1 1 0 0

0 1 1 0 1 0

1 1 1 0 1 0

1 0 1 0 1 0

1 1 1 0 1 1

 0.83 0.83 0.83 0.17 0.83 0.17

1 2 3 4 5 6

support

i i i i i i

T

T

T

T

T

T

 
 
 
 
 
 
 
 
 
  

b) New matrix structure.

Figure 1. The change process of matrix A.

Next, we take the transactions of {T7, T8, T3, T4, T5,

T6} as the example to explain the MFIs mining process

more clearly, the whole process is divided into next

steps.

 Retaining the 1-itemsets whose support value are

not less than min_sup and saving them into MFIs_L,

these frequent 1-itemsets are the basic elements of

matrix B. Here, the frequent 1-itemsets in MFIs_L

are {i1}, {i2}, {i3}, {i5}.

 Taking the frequent 1-itemsets that saved in MFIs_L

to construct matrix B, the row of matrix B is the

front (n-1) elements and the column of matrix B is

the last (n-1) elements, where n is the size of

frequent 1-itemsets. Thus, the row of matrix B is {i1,

i2, i3} and the column of matrix B is {i2, i3, i5}. Next,

the support of each 2-itemset ({i1, i2}, {i1, i3}, {i1,

i5}, {i2, i3}, {i2, i5}, {i3, i5}) is calculated and their

support values are marked into matrix B. Then, the

frequent 2-itemsets are saved into MFIs_L. The

specific information of matrix B is shown in Figure

2.

1

2

3

 1 1 1

 0 1 1

 0 0 1

2 3 5i i i

i

i

i

 
 
 
  

Figure 2. The structure of matrix B.

 After constructing matrix B, the infrequent itemsets

need to be deleted first and each sub-itemsets of

frequent 2-itemsets need to be moved out from

MFIs_L. For the example, frequent 1-itemsets {i1}

and {i2} are the sub-itemsets of frequent 2-itemset

{i1, i2}, then, moving {i1} and {i2} out from

MFIs_L. Continue this operation until no frequent

966 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

1-itemsets is the sub-itemset of frequent 2-itemsets.

Here, the itemsets in MFIs_L are {i1, i2}, {i1, i3}, {i1,

i5}, {i2, i3}, {i2, i5} and {i3, i5}.

 Then, the frequent 2-itemsets need to be extended

into 3-itemsets. The frequent 2-itemset {i1,i2} is first

selected as the conditional potential itemset, due to

B(i1,i3)=1 and B(i2,i3)=1, {i1,i2} can be extended into

{i1,i2,i3} and it is saved into MFIs_L due to

support({i1,i2,i3})=0.5>0.33. Repeat the same

process to gain the frequent 3-itemsets {i1, i2, i5}, {i1,

i3, i5}, {i2, i3, i5}, and they are saved into MFIs_L.

After gaining all frequent 3-itemsets, each frequent

2-itemset is checked and all sub-itemsets need to be

moved out from MFIs_L.

 Next, the frequent 3-itemsets need to be extended

into 4-itemsets. The frequent {i1,i2,i3} is first

selected as the conditional potential itemset, due to

B(i1,i5)=1, B(i2,i5)=1 and B(i3,i5)=1, {i1,i2,i3} can be

extended into {i1,i2,i3,i5} and it is saved into MFIs_L

for support({i1,i2,i3,i5})= 0.333>0.33. After gaining

the frequent 4-itemsets, each frequent 3-itemset is

checked and each sub-itemset need to be moved out

from MFIs_L.

After above steps, the MFIs_L is {i1, i2, i3, i5}.

5. Experimental Analysis

To verify the efficiency of our proposed RMFIsM

method, the estDec method [2], the TMFI method [6]

and the DSM-MFI method [8] are compared in our

experiment. All experiments are conducting on a

machine running Windows 7 with an Intel dual core i3-

2020 2.93 GHz processor, the development

environment is Microsoft Visual Studio 2010. The

performance of RMFIsM method is analyzed on

synthetic sparse datasets of T10.I4.D1000K and

synthetic dense dataset of T30.I20.D1000K that

generated by IBM data generator, where |T| means the

average size of the transactions, |I| means the potential

size of frequent itemsets and |D| means the total

number of transactions, K means one thousand.

Experiments are conducted to investigate the

efficiency of the RMFIsM method both in time cost

and memory usage with different value of min_sup,

different size of sliding window and different number

of transactions, the experiments are also conducted to

test the accuracy rate of RMFIsM method. Each group

of experiments is repeated for 50 times, and the

average time and memory usage are calculated.

5.1. Time Cost for RMFIsM Method

The time cost for mining recent MFIs on sparse dataset

T10.I4.D1000K with different value of min_sup is

shown in Figure 3-a. The time cost on T10.I4.D1000K

with different size of sliding window is shown in

Figure 3-b. The time cost on T10.I4.D1000K with

different number of transactions is shown in Figure 3-c.

The time cost on dense dataset T30.I20.D1000K is

shown in Figure 4-a, Figure 4-b, and Figure 4-c

separately.

It can be seen from Figure 3-a and Figure 4-a that

the time cost of RMFIsM, DSM-MFI, estDec and

TMFI methods shows a decreasing trend with the

increasing value of min_sup. The time cost of our

proposed RMFIsM method is the lowest of the

compared four methods, the reason is that in the

process of mining MFIs, RMFIsM method just

implements the “logic and” operation of each data

information that stored in matrixes, which reduces the

operations of iteration, sorting and pruning, moreover,

the infrequent itemsets are discarded directly in

RMFIsM method to avoid meaningless “extension”

operation. Compared with DSM-MFI method, the

saved time of RMFIsM algorithm is great in the first

and becomes smaller gradually with the increasing

value of min_sup, the reason is that the total frequent

itemsets are decreasing significantly accompanied with

large value of min_sup. Compared with dataset

T10.I4.D1000K, the time cost of T30.I20.D1000K on

MFIs mining process is much more, the reason is that

the itemsets in dense dataset T30.I20.D1000K are more

likely frequent for their larger support value.

It can be seen from Figures 3-b and 4-b that with the

increasing size of sliding window, the time cost of the

compared four methods shows an increasing trends, the

reason is that the number of frequent itemsets is rising

rapidly as |SW| is becoming larger gradually. The time

cost of our proposed RMFIsM method is the lowest of

the four methods, and the time cost on

T30.I20.D1000K is much larger than that on

T10.I4.D1000K.

We can obviously see from Figures 3-c and 4-c that

the time cost of compared four methods is increasing

with the increased number of transactions, the reason is

that the frequent itemsets increase gradually when the

number of transactions is rising. The time cost of

RMFIsM method is less than DSM-MFI, estDec and

TMFI methods, and the time cost on T30.I20.D1000K

is much more than that on T10.I4.D1000K.

Mining Recent Maximal Frequent Itemsets Over Data Streams with Sliding Window 967

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150

200

250

300

350

Value of min_sup (|SW|=1000, Transactions=1000K)

T
im

e
 c

o
s
t

(s
e
c
o
n
d
)

DSM-MFI

estDec

TMFI

RMFIsM

200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

Size of sliding window (min_sup=0.1, Transactions=1000K)

T
im

e
 c

o
s
t

(s
e
c
o
n
d
)

DSM-MFI

estDec

TMFI

RMFIsM

300K 400K 500K 600K 700K 800K 900K1000K
0

50

100

150

200

250

Number of transactions (min_sup=0.1, |SW|=1000)

T
im

e
 c

o
s
t

(s
e
c
o
n
d
)

DSM-MFI

estDec

TMFI

RMFIsM

 a) Different min_sup. b) Different sizes of sliding window. c) Different numbers of transactions.

Figure 3. Time cost on sparse dataset T10.I4.D1000K.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

200

400

600

800

1000

Value of min_sup (|SW|=1000, Transactions=1000K)

T
im

e
 c

o
s
t

(s
e
c
o
n
d
)

DSM-MFI

estDec

TMFI

RMFIsM

200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

Size of sliding window (min_sup=0.1, Transactions=1000K)

T
im

e
 c

o
s
t

(s
e
c
o
n
d
)

DSM-MFI

estDec

TMFI

RMFIsM

300K 400K 500K 600K 700K 800K 900K1000K
0

100

200

300

400

500

600

700

Number of transactions (min_sup=0.1, |SW|=1000)

T
im

e
 c

o
s
t

(s
e
c
o
n
d
)

DSM-MFI

estDec

TMFI

RMFIsM

a) Different min_sup. b) Different sizes of sliding window. c) Different numbers of transactions.

Figure 4. Time cost on dense dataset T30.I20.D1000K.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

500

1000

1500

2000

2500

3000

Value of min_sup (|SW|=1000, Transactions=1000K)

M
e
m

o
ry

 u
s
a
g
e
 (

K
B

)

DSM-MFI

estDec

TMFI

RMFIsM

200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

3000

Size of sliding window (min_sup=0.1, Transactions=1000K)

M
e
m

o
ry

 u
s
a
g
e
 (

K
B

)

DSM-MFI

estDec

TMFI

RMFIsM

300K 400K 500K 600K 700K 800K 900K1000K
0

500

1000

1500

Number of transactions (min_sup=0.1, |SW|=1000)

M
e
m

o
ry

 u
s
a
g
e
 (

K
B

)

DSM-MFI

estDec

TMFI

RMFIsM

a) Different min_sup. b) Different sizes of sliding window. c) Different numbers of transactions.

Figure 5. Memory usage on sparse dataset T10.I4.D1000K.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2000

4000

6000

8000

10000

Value of min_sup (|SW|=1000, Transactions=1000K)

M
e
m

o
ry

 u
s
a
g
e
 (

K
B

)

DSM-MFI

estDec

TMFI

RMFIsM

200 400 600 800 1000 1200 1400 1600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Size of sliding window (min_sup=0.1, Transactions=1000K)

M
e
m

o
ry

 u
s
a
g
e
 (

K
B

)

DSM-MFI

estDec

TMFI

RMFIsM

300K 400K 500K 600K 700K 800K 900K1000K
0

1000

2000

3000

4000

5000

Number of transactions (min_sup=0.1, |SW|=1000)

M
e
m

o
ry

 u
s
a
g
e
 (

K
B

)

DSM-MFI

estDec

TMFI

RMFIsM

 a) Different min_sup. b) Different sizes of sliding window. c) Different numbers of transactions.

Figure 6. Memory usage on dense dataset T30.I20.D1000K.

5.2. Memory Usage for RMFIsM Method

The memory usage is an important factor to measure

the efficiency of our proposed RMFIsM method. The

experiment to test the peak memory usage is also

conducted with different value of min_sup, different

size of sliding window and different number of

transactions, the parameters used in this experiment is

same with that in subsection 5.1, and the experimental

results are shown in Figures 5 and 6.

We can see from Figures 5-a and 6-a that with the

increasing value of min_sup, the peak memory usage

of the compared four algorithms shows a decreasing

trend. It is owing to that the number of frequent 1-

968 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

itemsets is decreasing gradually with the larger value of

min_sup, therefore, the number of intermediate

generated itemsets in MFIs mining process is also

reduced much. The peak memory usage of our

proposed RMFIsM method is lowest of the four

methods, the reason is that the infrequent itemsets have

been discarded in the beginning of RMFIsM method, so

the meaningless “extension” operation hasn’t been

conducted to occupy the additional memory storage.

Compared with sparse dataset T10.I4.D1000K, the

memory usage of MFIs mining process on dense

dataset T30.I20.D1000K is much more.

Figures 5-b and 6-b show that the peak memory

usage of the compared four methods grows up

gradually with the increasing size of sliding window,

the reason is that the number of frequent itemsets

becomes much larger with the extending size of

sliding window. The peak memory usage on sparse

dataset T10.I4.D1000K is much smaller than on dense

dataset T30.I20.D1000K.

We can see from Figures 5-c and 6-c that the peak

memory usage of RMFIsM, DSM-MFI, estDec and

TMFI methods is increasing smoothly with the

increasing number of transactions and the occupied

peak memory usage is linearly related to the number

of transactions. In the compared four methods, the

peak memory usage of RMFIsM method is lower than

estDec, TMFI and DSM-MFI methods in a certain

extent. The peak memory usage on dense dataset

T30.I20.D1000K is also much larger than that on

sparse dataset T10.I4.D1000K.

Table 2. Accuracy rate of RMFIsM method.

Dataset min_sup T10 T30 Dataset |SW| T10 T30 Dataset Transactions T10 T30

0.05 87.2% 89.6% 200 91.3% 92.2% 300K 92.1% 93.4%

0.1 92.3% 93.4% 400 91.6% 92.6% 400K 92.4% 93.2%

0.15 95.2% 96.1% 600 91.9% 92.8% 500K 92.3% 93.5%

0.2 96.4% 96.9% 800 92% 93.1% 600K 92.2% 93.5%

0.25 96.8% 97.3% 1000 92.3% 93.5% 700K 92.4% 93.3%

0.3 97.1% 97.5% 1200 92.5% 93.6% 800K 92.1% 93.4%

0.35 97.2% 97.6% 1400 92.7% 93.7% 900K 92.2% 93.2%

0.4 97.3% 97.8% 1600 92.8% 93.9% 1000K 92.3% 93.5%

5.3. Accuracy Rate of RMFIsM Method

The accuracy rate of our proposed RMFIsM method is

also tested with different value of min_sup, different

size of sliding window and different number of

transactions, the set of experimental parameters is same

with subsection 5.1 and the experimental result is

shown in Table 2.

We can see from Table 2 that with the arising value

of min_sup, the accuracy rate of the mining results is

improving slowly both on datasets T10.I4.D1000K and

T30.I20.D1000K, the reason is that the number of

frequent itemsets shows a decreasing trend with the

increasing value of min_sup, which results the

influence of infrequent itemsets disappearing gradually.

Furthermore, with the increasing size of sliding

window, the accuracy rate of RMFIsM method is in

rising trend, and the accuracy rate is relatively stable in

general. Moreover, the accuracy rate of RMFIsM

method is smooth between 92.1% to 92.4% on sparse

dataset T10.I4.D1000K and between 93.2% to 93.5%

on dense dataset T30.I20.D1000K with the increasing

number of transactions, it is obvious that the number of

transactions is a small factor that impact the accuracy

rate of MFIs mining. The accuracy rate result indicates

that our proposed RMFIsM method is suitable for

mining the maximal frequent itemsets over online data

streams under the larger value of min_sup.

6. Conclusions

It is often difficult to quickly mine the recent frequent

itemsets over huge scale of data streams. In this paper,

we propose an improved approach called RMFIsM to

mine the maximal frequent itemsets instead of to mine

all frequent itemsets. We first construct two matrixes

to store the data information of each transaction and

the information of frequent 1-itemsets. The frequent

(p+1)-itemsets are mined by the “extension” process

of frequent p-itemsets, the current maximal frequent

itemsets are stored into MFIs_L and each sub-itemsets

of frequent long itemsets are moved out from MFIs_L.

Through the compared experimental with DSM-MFI,

estDec and TMFI methods, it can be easily found that

our proposed RMFIsM method is more effective both

in time cost and memory usage, and the accuracy rate

of MFIs mining is also very high.

References

[1] Calders T., Dexters N., Gillis J., and Goethals B.,

“Mining Frequent Itemsets in A Stream,”

Information Systems, vol. 39, pp. 233-255, 2014.

[2] Chang J. and Lee W., “Finding Recent Frequent

Itemsets Adaptively Over Online Data Streams,”

in Proceedings of 9th International Conference

on Knowledge Discovery and Data Mining,

Washington, pp. 487-492, 2003.

[3] Deng Z., “Diffnodesets: An Efficient Structure

for Fast Mining Frequent Itemsets,” Applied Soft

Mining Recent Maximal Frequent Itemsets Over Data Streams with Sliding Window 969

Computing, vol. 41, pp. 214-223, 2016.

[4] Deypir M. and Sadreddini M., “A Dynamic

Layout of Sliding Window for Frequent Itemset

Mining Over Data Streams,” Journal of Systems

and Software, vol. 85, no. 3, pp. 746-759, 2012.

[5] Deypir M., Sadreddini M., and Tarahomi M., “An

Efficient Sliding Window Based Algorithm for

Adaptive Frequent Itemset Mining over Data

Streams,” Journal of Information Science and

Engineering, vol. 29, no. 5, pp. 1001-1020, 2013.

[6] Guidan F. and Shaohong Y., “A Frequent

Itemsets Mining Algorithm Based on Matrix in

Sliding Window Over Data Streams,” in

Proceedings of 3rd International Conference on

Intelligent System Design and Engineering

Applications, Hong Kong, pp. 66-69, 2013.

[7] Han M., Ding J., and Li J., “TDMCS: An

Efficient Method for Mining Closed Frequent

Patterns over Data Streams Based on Time Decay

Model,” The International Arab Journal of

Information Technology, vol. 14, no. 6, pp. 851-

860, 2017.

[8] Li H., Lee S., and Shan M., “Online Mining

(Recently) Maximal Frequent Item sets Over Data

Streams,” in Proceedings of 15th International

Workshop on Research Issues in Data

Engineering: Stream Data Mining and

Applications, Tokyo, pp. 11-18, 2005.

[9] Lin M., Hsueh S., and Wang C., “Interactive

Mining of Frequent Patterns in A Data Stream of

Time-Fading Models,” in Proceedings of 8th

International Conference on Intelligent Systems

Design and Applications, Kaohsiung, pp. 513-

518, 2008.

[10] Mao G., Wu X., Zhu X., Chen G., and Liu C.,

“Mining Maximal Frequent Itemsets From Data

Streams,” Journal of Information Science, vol. 33,

no. 3, pp. 251-262, 2007.

[11] Nori F., Deypir M., and Sadreddini M., “A

Sliding Window Based Algorithm For Frequent

Closed Itemset Mining Over Data Streams,”

Journal of Systems and Software, vol. 86, no. 3,

pp. 615-623, 2013.

[12] Shin S., Lee D., and Lee W., “CP-Tree: An

Adaptive Synopsis Structure for Compressing

Frequent Itemsets Over Online Data Streams,”

Information Sciences, vol. 278, pp. 559-576,

2014.

[13] Yang J., Wei Y., and Zhou F., “An Efficient

Algorithm for Mining Maximal Frequent Patterns

over Data Streams,” in Proceedings of 7th

International Conference on Intelligent Human-

Machine Systems and Cybernetics, Hangzhou, pp.

444-447, 2015.

Saihua Cai is a Ph.D. student in

College of Information and

Electrical Engineering, China

Agricultural University, China. He

received the MS degree from

Jiangsu University, China, in 2016.

His major research interests include

uncertain data management, data mining, outlier

detecting and software testing.

Shangbo Hao is a Master Student in

College of Information and

Electrical Engineering, China

Agricultural University, China. His

research interests include pattern

mining and outlier detecting.

Ruizhi Sun is a Full Professor in

College of Information and

Electrical Engineering, China

Agricultural University, China. He

received his Ph.D. degree in

Computer Science and Technology

from Tsinghua University, Beijing,

China, in 2003. His major research interests include

agricultural data acquisition and processing

technology, computer network and applications,

workflow management and cloud computing.

Gang Wu is an associate professor

in Secretary of Computer Science

Department, Tarim University,

China. His research interests mainly

involve agriculture information

processing technology, data mining,

agricultural remote sensing

application.

