Computer Science and Information Systems 2024 Volume 21, Issue 1, Pages: 1-20
https://doi.org/10.2298/CSIS230522067G
Full text ( 3713 KB)
FSASA: Sequential recommendation based on fusing session-aware models and self-attention networks
Guo Shangzhi (College of Computer Science, Chongqing University Chongqing, China), 20211401018g@cqu.edu.cn
Liao Xiaofeng (College of Computer Science, Chongqing University Chongqing, China), xfliao@cqu.edu.cn
Meng Fei (College of Computer Science, Chongqing University Chongqing, China), 20211401024g@cqu.edu.cn
Zhao Qing (College of Computer Science, Chongqing University Chongqing, China), 20211401020g@cqu.edu.cn
Tang Yuling (Hunan Creator Information Technologies CO., LTD. Changsha, China), yuling.tang@chinacreator.com
Li Hui (Jiangxi Institute of Land and Space Survey and Planning Nanchang, China), lihcool@.com
Zong Qinqin (Jiangxi Biological Vocational College Nanchang, China), honeybabyqinqin@gmail.com
The recommendation system can alleviate the problem of “information overload”, tap the potential value of data, push personalized information to users in need, and improve information utilization. Sequence recommendation has become a hot research direction because of its practicality and high precision. Deep Neural Networks (DNN) have the natural advantage of capturing comprehensive relations among different entities, thus almost occupying a dominant position in sequence recommendation in the past few years. However, as Deep Learning (DL)-based methods are widely used to model local preferences under user behavior sequences, the global preference modeling of users is often underestimated, and usually, only some simple and crude user latent representations are introduced. Therefore, this paper proposes a sequential recommendation based on Fusing Session-Aware models and Self-Attention networks (FSASA). Specifically, we use the Self-Attentive Sequential Recommendation (SASRec) model as a global representation learning module to capture long-term preferences under user behavior sequences and further propose an improved session-aware sequential recommendation model as a local learning representation module from user model the user’s dynamic preferences in the historical behavior, and finally use the Gated Recurrent Unit (GRU) module to calculate their weights. Experiments on three widely used recommendation datasets show that FSASA outperforms state-of-the-art baselines on two commonly used metrics.
Keywords: Recommendation Systems, Sequential Recommendation, Session-Aware Recommendation, Self-Attention, Gated Recurrent Unit
Show references
Chen, C., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Efficient neural matrix factorization without sampling for recommendation. ACM Transactions on Information Systems (TOIS) 38(2), 1-28 (2020)
Chen, J., Zhang, H., He, X., Nie, L., Liu,W., Chua, T.S.: Attentive collaborative filtering: Multimedia recommendation with item-and component-level attention. In: Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. pp. 335-344 (2017)
Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems. pp. 7-10 (2016)
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM conference on recommender systems. pp. 191-198 (2016)
Cui, Z., Xu, X., Fei, X., Cai, X., Cao, Y., Zhang, W., Chen, J.: Personalized recommendation system based on collaborative filtering for iot scenarios. IEEE Transactions on Services Computing 13(4), 685-695 (2020)
Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M.: Personalized ranking metric embedding for next new poi recommendation. In: IJCAI’15 Proceedings of the 24th International Conference on Artificial Intelligence. pp. 2069-2075. ACM (2015)
Garcin, F., Dimitrakakis, C., Faltings, B.: Personalized news recommendation with context trees. In: Proceedings of the 7th ACM Conference on Recommender Systems. pp. 105-112 (2013)
Graves, A., Graves, A.: Long short-term memory. Supervised sequence labelling with recurrent neural networks pp. 37-45 (2012)
He, R., Kang, W.C., McAuley, J.: Translation-based recommendation. In: Proceedings of the eleventh ACM conference on recommender systems. pp. 161-169 (2017)
He, R., McAuley, J.: Fusing similarity models with markov chains for sparse sequential recommendation. In: 2016 IEEE 16th international conference on data mining (ICDM). pp. 191-200. IEEE (2016)
He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. pp. 549-558 (2016)
He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., et al.: Practical lessons from predicting clicks on ads at facebook. In: Proceedings of the eighth international workshop on data mining for online advertising. pp. 1-9 (2014)
Hu, L., Cao, L., Wang, S., Xu, G., Cao, J., Gu, Z.: Diversifying personalized recommendation with user-session context. In: IJCAI. pp. 1858-1864 (2017)
Hu, L., Chen, Q., Zhao, H., Jian, S., Cao, L., Cao, J.: Neural cross-session filtering: Next-item prediction under intra-and inter-session context. IEEE Intelligent Systems 33(6), 57-67 (2018)
Hwang,W.S., Li, S., Kim, S.W., Lee, K.: Data imputation using a trust network for recommendation via matrix factorization. Computer Science and Information Systems 15(2), 347-368 (2018)
Jannach, D., Ludewig, M., Lerche, L.: Session-based item recommendation in e-commerce: on short-term intents, reminders, trends and discounts. User Modeling and User-Adapted Interaction 27, 351-392 (2017)
Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE international conference on data mining (ICDM). pp. 197-206. IEEE (2018)
Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization for document context-aware recommendation. In: Proceedings of the 10th ACM conference on recommender systems. pp. 233-240 (2016)
Koren, Y., Bell, R.: Advances in collaborative filtering, recommender systems handbook, editör: Ricci, f., rokach, l., shapira, b (2015)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30-37 (2009)
Latifi, S., Mauro, N., Jannach, D.: Session-aware recommendation: A surprising quest for the state-of-the-art. Information Sciences 573, 291-315 (2021)
Lin, J., Pan, W., Ming, Z.: Fissa: fusing item similarity models with self-attention networks for sequential recommendation. In: Proceedings of the 14th ACM Conference on Recommender Systems. pp. 130-139 (2020)
Liu, B., Tang, R., Chen, Y., Yu, J., Guo, H., Zhang, Y.: Feature generation by convolutional neural network for click-through rate prediction. In: The World Wide Web Conference. pp. 1119-1129 (2019)
Liu, H., Lu, J., Yang, H., Zhao, X., Xu, S., Peng, H., Zhang, Z., Niu,W., Zhu, X., Bao, Y., et al.: Category-specific cnn for visual-aware ctr prediction at jd. com. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. pp. 2686- 2696 (2020)
Ma, C., Ma, L., Zhang, Y., Sun, J., Liu, X., Coates, M.: Memory augmented graph neural networks for sequential recommendation. In: Proceedings of the AAAI conference on artificial intelligence. vol. 34, pp. 5045-5052 (2020)
Ma, Y., Narayanaswamy, B., Lin, H., Ding, H.: Temporal-contextual recommendation in realtime. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. pp. 2291-2299 (2020)
Medsker, L., Jain, L.C.: Recurrent neural networks: design and applications. CRC press (1999)
Merabet, F.Z., Benmerzoug, D.: Qos prediction for service selection and recommendation with a deep latent features autoencoder. Computer Science and Information Systems 19(2), 709-733 (2022)
Ouyang, W., Zhang, X., Li, L., Zou, H., Xing, X., Liu, Z., Du, Y.: Deep spatio-temporal neural networks for click-through rate prediction. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2078-2086 (2019)
Paterek, A.: Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of KDD cup and workshop. vol. 2007, pp. 5-8 (2007)
Pathak, A., Gupta, K., McAuley, J.: Generating and personalizing bundle recommendations on steam. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 1073-1076 (2017)
Phuong, T.M., Thanh, T.C., Bach, N.X.: Combining user-based and session-based recommendations with recurrent neural networks. In: Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I 25. pp. 487-498. Springer (2018)
Qiu, R., Li, J., Huang, Z., Yin, H.: Rethinking the item order in session-based recommendation with graph neural networks. In: Proceedings of the 28th ACM international conference on information and knowledge management. pp. 579-588 (2019)
Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems. ACM Computing Surveys (CSUR) 51(4), 1-36 (2018)
Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: proceedings of the Eleventh ACM Conference on Recommender Systems. pp. 130-137 (2017)
Rendle, S.: Factorization machines. In: 2010 IEEE International conference on data mining. pp. 995-1000. IEEE (2010)
Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized markov chains for next-basket recommendation. In: Proceedings of the 19th international conference on World wide web. pp. 811-820 (2010)
Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th international conference on World Wide Web. pp. 521-530 (2007)
Ruck, D.W., Rogers, S.K., Kabrisky, M.: Feature selection using a multilayer perceptron. Journal of Neural Network Computing 2(2), 40-48 (1990)
Ruocco, M., Skrede, O.S.L., Langseth, H.: Inter-session modeling for session-based recommendation. In: Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems. pp. 24-31 (2017)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web. pp. 285-295 (2001)
Seol, J.J., Ko, Y., Lee, S.g.: Exploiting session information in bert-based session-aware sequential recommendation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 2639-2644 (2022)
Shen, X., Yi, B., Zhang, Z., Shu, J., Liu, H.: Automatic recommendation technology for learning resources with convolutional neural network. In: 2016 international symposium on educational technology (ISET). pp. 30-34. IEEE (2016)
Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., Tang, J.: Autoint: Automatic feature interaction learning via self-attentive neural networks. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. pp. 1161-1170 (2019)
Sun, F., Liu, J.,Wu, J., Pei, C., Lin, X., Ou,W., Jiang, P.: Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In: Proceedings of the 28th ACM international conference on information and knowledge management. pp. 1441-1450 (2019)
Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolutional sequence embedding. In: Proceedings of the eleventh ACM international conference on web search and data mining. pp. 565-573 (2018)
Wan, M., McAuley, J.: Item recommendation on monotonic behavior chains. In: Proceedings of the 12th ACM conference on recommender systems. pp. 86-94 (2018)
Wang, S., Cao, L., Wang, Y., Sheng, Q.Z., Orgun, M.A., Lian, D.: A survey on session-based recommender systems. ACM Computing Surveys (CSUR) 54(7), 1-38 (2021)
Wang, S., Hu, L.,Wang, Y., Cao, L., Sheng, Q.Z., Orgun, M.: Sequential recommender systems: challenges, progress and prospects. arXiv preprint arXiv:2001.04830 (2019)
Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval. pp. 165-174 (2019)
Wu, S., Tang, Y., Zhu, Y.,Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 346-353 (2019)
Xu, C., Zhao, P., Liu, Y., Sheng, V.S., Xu, J., Zhuang, F., Fang, J., Zhou, X.: Graph contextualized self-attention network for session-based recommendation. In: IJCAI. vol. 19, pp. 3940-3946 (2019)
Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Self-attention with functional time representation learning. Advances in neural information processing systems 32 (2019)
Ye, H., Li, X., Yao, Y., Tong, H.: Towards robust neural graph collaborative filtering via structure denoising and embedding perturbation. ACM Transactions on Information Systems 41(3), 1-28 (2023)
Ying, H., Zhuang, F., Zhang, F., Liu, Y., Xu, G., Xie, X., Xiong, H., Wu, J.: Sequential recommender system based on hierarchical attention network. In: IJCAI International Joint Conference on Artificial Intelligence (2018)
Yu, F., Liu, Q., Wu, S., Wang, L., Tan, T.: A dynamic recurrent model for next basket recommendation. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. pp. 729-732 (2016)
Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional generative network for next item recommendation. In: Proceedings of the twelfth ACM international conference on web search and data mining. pp. 582-590 (2019)
Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., Wang, L.: Personalized graph neural networks with attention mechanism for session-aware recommendation. IEEE Transactions on Knowledge and Data Engineering 34(8), 3946-3957 (2020)
Zhang, Y.: The application of e-commerce recommendation system in smart cities based on big data and cloud computing. Computer Science and Information Systems 18(4), 1359-1378 (2021)
Zheng, L., Noroozi, V., Yu, P.S.: Joint deep modeling of users and items using reviews for recommendation. In: Proceedings of the tenth ACM international conference on web search and data mining. pp. 425-434 (2017)
Zhenzhen, X., Jiang, H., Kong, X., Kang, J.,Wang,W., Xia, F.: Cross-domain item recommendation based on user similarity. Computer Science and Information Systems 13(2), 359-373 (2016)