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Abstract

Smart speakers and voice-based virtual assistants are used to retrieve information, interact with other
devices, and command a variety of Internet of Things (IoT) nodes. To this aim, smart speakers and
voice-based assistants typically take advantage of cloud architectures: vocal commands of the user
are sampled, sent through the Internet to be processed and transmitted back for local execution, e.g.,
to activate an IoT device. Unfortunately, even if privacy and security are enforced through state-
of-the-art encryption mechanisms, the features of the encrypted traffic, such as the throughput, the
size of protocol data units or the IP addresses can leak critical information about the habits of the
users. In this perspective, in this paper we showcase this kind of risks by exploiting machine learn-
ing techniques to develop black-box models to classify traffic and implement privacy leaking attacks
automatically. We prove that such traffic analysis allows to detect the presence of a person in a
house equipped with a Google Home device, even if the same person does not interact with the smart
device. We also present a set of experimental results collected in a realistic scenario, and propose
possible countermeasures.
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1 Introduction

Modern smart homes are composed of several devices connected and organized in complex ecosystem.
Among them, smart speakers and voice-based virtual assistants are becoming an essential building block
of modern smart homes environments. For instance, they can be used to retrieve information, interact
with other devices, and command a wide range of Internet of Things (IoT) nodes. Moreover, smart
speakers can be used as hubs for managing IoT deployments or implementing device automation ser-
vices, e.g., to perform routines in smart lighting or provide remote connectivity for domestic appliances.
According to [23, 12], there are over 200 million of smart speakers installed in private properties, and
the trend is expected to culminate in 2030 when the number will exceed 500 million of units.

In general, smart speakers and voice-based virtual assistants take advantage of cloud-based archi-
tectures: vocal commands of the user are sampled and sent through the Internet to be processed. As a
result, the speaker or the virtual assistant receives a textual representation as well as optional, companion
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multimedia data. Then, it executes the command or routes it to a proper hub using a variety of wireless
technologies (e.g., ZigBee, Bluetooth or Wi-Fi) to communicate with IoT nodes.

From a privacy and security standpoint, the prime mechanism to protect the transmitted data is the
encryption of traffic (see, e.g., reference [41] and references therein). However, features of the flows
such as the throughput, the size of protocol data units or (address, port) tuples, can leak valuable
information about the habits of the users [15] or the number and the type of IoT nodes [6, 34]. As a
consequence, an attacker can collect traffic from the local IEEE 802.11 wireless loop or between the
home gateway and the Internet and then try to guess the type of IoT nodes and the state of sensors and
actuators. By exploiting this knowledge, a malicious user can launch a vast collection of attacks, such
as, users profiling, physical attacks or social engineering attacks [6, 34].

Despite the underlying technology or the complexity of the deployment, there is an increasing interest
in investigating risks arising from the statistical analysis of the traffic exchanged by a smart speaker and
the cloud. For instance, in [6], authors demonstrate how to infer some user activities monitoring the
network traffic, e.g., traffic flows produced by switches and health monitors can leak the sleep cycle of
a user. In [18], the traffic produced by state transitions of home devices (i.e., a thermostat and a carbon
dioxide detector) can be used as an indicator to understand if a user is present in the home. Following
the same approach, the authors of [1] use passive measurements to develop models of the daily routine
of individuals (e.g., leaving/arriving home). Concerning works aiming at identifying devices, possibly
by adopting machine learning or statistical tools, in [34] several machine learning techniques are used to
identify IoT devices by exploiting “poor” information like the length of packets produced during normal
operations.

Besides, in [4] the risks of HTTP-based communications are discussed, both from the perspective of
inferring data on the devices (e.g., the state or intensity of a light source) and from the perspective of
performing session-hijacking attacks. Furthermore, [24] highlights the importance of the sensitive data
stored in IoT nodes and smart speakers for forensics investigations, as traffic patterns, may enable the
exfiltration of data by malware owing to information hiding schemes [19] or hidden channels.

In this vein, this paper investigates the use of machine learning techniques to develop black-box
models for the automatic classification of network traffic and the implementation of privacy leaking
attacks in smarthome IoT deployments. Unlike previous works [1, 4, 18, 34], we focus on understanding
whether the presence of the user can be recognised even if no queries to the device are made. In fact,
we argue than once a request is generated, the produced traffic volumes or the appearance of specific
network addresses may leak the presence of a human operator in the house. To this aim, we empirically
prove how it is possible to detect the presence of a person in a house by analysing the traffic produced by
a Google Home device under the assumption that the person is not interacting with it. Then, we discuss
some possible remediation to mitigate such unexpected identification by acting at the traffic level. In fact,
designing appropriate mitigation techniques is often overlooked (see, e.g., [4] for a notable exception) or
addressed at an API-permission level [2], which is definitely out of the scope of the paper.

The remainder of the paper is structured as follows. Section 2 presents the reference architecture
used by smart speakers to control IoT devices, the threat model and the machine learning mechanism
exploitable by an attacker. Section 3 deals with the testbed used to collect data, while Section 4 showcases
the experimental results. Section 5 proposes some countermeasures and Section 6 concludes the paper
and hints some possible future directions.

2 Architecture, Threat Model and IA Tools

Smart speakers provide a user interface to issue requests or commands using natural speech. They can be
also used as hubs for other IoT nodes and network appliances or to perform tasks like playing music and
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Figure 1: Reference architecture leveraging smart speakers to control nodes in smart home scenarios.

video, buying items, and making recommendations. In addition, smart speakers and virtual assistants
can provide a variety of information including news, weather forecasts and traffic information.

For the time being, Google Home1, HomePod2 and Amazon Echo3 are the most popular smart speak-
ers incorporating the above features, while Amazon Alexa4, Apple Siri5 and Google Assistant6 are the
main virtual assistants. For this class of devices and services, literature still lacks a unified terminology,
referring to smart speakers and virtual assistants with terms like “smart personal assistants”, “virtual
personal assistants” or“home digital voice assistants”, to mention a few. Therefore, in the following, we
use the terms smart speakers or Intelligent Virtual Assistant (IVA) interchangeably, except when doubt
may arise.

Even though specific design choices and configurations characterize each smart speaker model, the
core architectural blueprint is quite standard and it is composed of four major component, as shown in
Figure 1:

• Smart Speaker or IVA: it is responsible for gathering vocal commands, sampling them and trans-
mitting the data to a backend via the Internet. Upon receiving a response, the smart speaker or
software agent can provide a feedback to the user or directly interact with other devices. For
instance, the smart speaker could start the playback of a music stream received from a Content De-
livery Network (CDN). Each IVA is activated via its own phrase or keyword and the most popular
are “Ok Google”, “Alexa”, and “Hey Siri”, for the case of Google Assistant, Amazon Echo/Alexa
and Apple/HomeKit ecosystem, respectively. In some cases, the Smart Speaker can also act as
a sort of “router”, thus delivering commands to the suitable hub. To avoid security and privacy
threats, communications are encrypted via the Secure Socket Layer (SSL) [21].

• Client and IoT Devices: they are the targets of commands of the ecosystem. Sensors, actuators,
Bluetooth/ZigBee bridges or IoT-capable devices are typical examples of IoT nodes installed in a
smart home. As previously said, some entities belonging to this class can be co-located within the
smart speaker.

1https://store.google.com/product/google_home
2https://www.apple.com/homepod/
3https://www.amazon.com/echodot
4https://developer.amazon.com/alexa
5https://developer.apple.com/siri/
6https://assistant.google.com/
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• IVA Cloud: it is the backend in charge of processing data and delivering back text/binary rep-
resentations of commands to be executed, including additional contents like multimedia streams,
geographical information or composite set of information. With the advent of open ecosystems
promoting the interaction among services provided by multiple vendors, the borders of the IVA
cloud are blurring [15, 21]. Indeed, in a typical smart home scenario, the vocal stimuli are pro-
cessed in the vendor datacenter and sent back to the IVA. At the same time, the multimedia content
is transmitted through a third-party CDN, plus some of the IoT nodes composing the smart home
environment could establish a direct point-to-point connection with the computing infrastructure
of the manufacturer.

• Network: it provides connectivity. Typical deployments use a single local (wireless) network con-
nected via a router/gateway to the Internet. In most complex scenarios, different links could be
present, e.g., local access cabled network for some IoT nodes and hubs and multiple wireless loops
to connect smart devices [14]. Concerning protocols used for data exchange between the IVA and
the cloud, the TCP is the primary choice, with the multipath variant optimizing performance and
reducing delays [15]. A notable exception is the Google ecosystem. In details, Google Home
exploits QUIC [9], a protocol originally engineered to improve performance issues of HTTP/2
and based on transport streams multiplexed over UDP. The presence of QUIC can represent a sig-
nature to ease the identification of the ecosystem (e.g., Apple HomeKit vs Google). However,
this requires to understand its behaviours, which can be highly influenced by the underlying net-
work conditions (see, e.g., [13] for a sensitivity/performance analysis of the SPDY counterpart in
different wireless settings).

The overall set of components of the architectural blueprint is often defined as the ecosystem as
to emphasize the end-to-end pipeline at the basis of such services, i.e., hardware or software entities
allowing the interaction of end-users, computing and communication services, and software running in
IoT nodes.

2.1 Threat Model

In a typical scenario, smart speakers rely on a microphone to sense commands, which are processed
by a local vocal interpreter. Only wake-up commands are executed within the device, while others are
transmitted remotely to the cloud for the elaboration.

From a security standpoint, the continuous data exchange between the IVA and the cloud represents
a desirable target for attackers. In details, attacks such as Man-in-the-Middle (MitM) [5, 31, 27], attacks
on RPL (Routing Protocol for low power Lossy network) and 6LowPAN [35] or spoofing attacks [37, 42]
aim to intercept and exfiltrate sensitive data, even if the communication is encrypted using TLS/SSL. For
instance, [17] provides an extensive survey on MitM attacks for SSL/TLS conversations as well as tech-
niques to highjack or spoof different protocol entities and nodes (e.g., BGP routes, ARP/RARP caches,
and access points). Besides, [30] reports a MitM attack expressly crafted for the Alexa IVA. By us-
ing “skills”, which are extension added to incorporate third-party devices and services into the Amazon
ecosystem, the authors were able to redirect the victim’s voice input to a malicious node, thus hijacking
the conversation. Still, even if commercial IVAs implement state-of-the-art security mechanisms to pro-
tect the network traffic, they are prone to a variety of privacy-breaking attacks targeting a composite set
of features observable within the encrypted traffic flows [2, 6, 41].

To this aim, our work focuses on the class of attacks targeting the encrypted traffic in a black-box
manner, i.e., without trying to decipher the payload of protocol data units. In particular, we are in-
terested in threat scenarios where the adversary can exploit the encrypted traffic to infer “behavioural”
information, e.g., when the victim is not at home. Figure 2 depicts the reference threat model.
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Figure 2: Reference threat model for privacy-breaching attacks targeting the encrypted traffic.

In more detail, we assume an adversary (denoted as the malicious user in the figure) that can only
observe and acquire the traffic produced by the victim but cannot alter or manipulate it. To this aim, the
adversary should access the home router. However, this is not a tight constraint as he/she can abuse the
IEEE 802.11 wireless loop to gather information to be sent to the IVA (see, e.g., [16] for an analysis of
threats that can be done by moving throughout the attack surface). We also assume that the adversary
is not able to use the contents of the packets to launch the attack: in other words, he/she is not able
to attack the TLS/SSL or VPN usually deployed. Therefore, by inspecting the traffic produced by the
smart speaker, the adversary can only rely on statistics and metadata of conversations. As an example,
the attacker inspects (or computes by performing suitable operations) values like the throughput, the size
of protocol data units, the IP address, the number of different endpoints, flags within the headers of the
packets, or the behavior of the congestion control of the TCP. Finally, we can assume that the attacker
can isolate and recognize traffic that comes from different IoT devices, following the same approach of
[8, 26, 28, 38].

2.2 Machine Learning Techniques for Attacking the IoT Ecosystem

Collecting and analyzing traffic is nowadays a core technique used during the reconnaissance phase of an
attack [39, 29], for instance, to enumerate devices or fingerprint hosts to search for known vulnerabilities.
In this work, we consider the attacker wanting to infer high-level information, e.g., to launch social
engineering campaigns or plan physical attacks. The problem of data classification has been extensively
discussed in the literature and machine learning is considered the best technique [33] for this kind of
tasks, thus becoming a de-facto standard in the field. Those techniques are also used to resolve the
classification problem of encrypted network traffic, as discussed in [3, 36, 32, 43].

In our work, the goal of the attacker is to gather information on the state of the smart speaker or the
IVA by only monitoring encrypted network traffic, which reduces to a classification problem applied to
network flows. In the following, we shortlisted the most promising and used algorithms in the literature.
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k-Nearest Neighbors (kNN) is a supervised learning algorithm suitable for classification and regres-
sion problems [22]. The algorithm assumes that similar things exist in close proximity. Accordingly,
kNN finds the distances between a query and all the data with a known label and select the entries (i.e.,
k) closest to the query. Then it votes for the most frequent label (in the case of classification) or averages
the labels (in the case of regression).

Decision Tree (DT) is a family of non-parametric supervised learning methods for classification and
regression problems [22]. The DT builds classification or regression models in the form of a tree struc-
ture by breaking down the data into smaller subsets while developing an associated decision tree. The
process is iterated by further splitting the dataset and the final result is a tree with decision nodes and leaf
nodes.

Adaptive Boosting - AdaBoost (AB) exploits the the idea of creating a highly accurate prediction rule
by combining many inaccurate rules [22]. AdaBoost can be used in conjunction with many other types
of learning algorithms to improve performance. In this case, the output of the other learning algorithms
(defined as weak learners) is combined into a weighted sum that represents the final output of the boosted
classifier.

Random Forest is a model composed of many decision trees [11, 22] and relies upon the following
key steps: random sampling of training data points when building trees, and definition of random sub-
sets of feature generated when splitting nodes. When training, each tree in a random forest learns from
a random sample of the data points. The samples are drawn with a replacement technique, known as
bootstrapping [22], which means that some samples will be used multiple times in a single tree. The
idea is that by training each tree on different samples, the entire forest will have lower variance without
increasing the bias. We point out that, when using the random forest, only a subset of all the features are
considered for splitting each node in the decision tree.

Support Vector Machine (SVM) is a group of supervised learning models for solving both regression
or classification problems [22, 25, 40]. SVM builds non-probabilistic binary classifiers whose purpose
is the search for the optimal hyper-plan of separation between the two possible classes within the feature
space. The SVM is used more when the input data is not directly separable as it allows to map the initial
data into a higher dimension space where it is possible to find a separation hyperplane.

Neural Networks are a family of algorithms, loosely modelled after the human brain, that are designed
to recognize patterns [10, 22]. Neural networks are organized in a series of layers, where the input vector
enters at the left side of the network (the input layer), which is then projected to one or more hidden lay-
ers. Each input for each hidden layer, is a weighted sum of the values produced by the preceding layer.
This vector (or tensor) is called summed activation of the node. Each summed activation is transformed
via an activation function and then becomes the input for the next layer. Nonlinear activations, which
allow the network to model even very complex systems, are typically used after the input layer and after
all the hidden layers except the last one. In fact, before the output layer, a linear activation function is
used in case of regression or a softmax function for classification.

K-fold cross-validation avoids the risk of missing important patterns or trends in the dataset. To this
aim, the data is randomly partitioned into k equal-sized sub-samples. Each single sub-sample is retained
as the validation data for testing the model, and the remaining k−1 sub-samples are used as training data.
The process is then repeated k times, with each of the k sub-samples used exactly once as the validation
data. The k results from the folds are averaged to produce a single estimation. An interesting property of
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this method allows to limit overfitting phenomena.

3 Experimental Evaluation

To prove the effectiveness of privacy threats of smart speakers, we developed an experimental testbed
leveraging the machine learning techniques presented in Section 2.2. Due to the lack of public datasets
containing network traffic of smart speakers, we have also developed an automated framework for gen-
erating and collecting the relevant network traffic.

3.1 Testbed

For our analysis, we tested a Google Home Mini7 smart speaker, equipped with an IEEE 802.11 L2
interface, an internal microphone for detecting commands and the surrounding environment, and a loud-
speaker for audio playback and LEDs for visual feedback.

To connect to the network, a companion mobile application8 must be used. To this aim, we provided
the SSID and the password of our ad-hoc test network, which allowed the smart speaker to communicate
remotely with the cloud running Google services and to exchange data with other devices connect to the
same network (e.g., smart TV, smart light bulbs, etc.). We did not perform other tweaks as to reproduce an
average installation usually accounting for the device deployed by the user in an out-of-the-box flavour.

To capture data, we prepared a standard computer to act as the IEEE 802.11 access point of the
network and we deployed ad-hoc scripts for running tshark9, i.e., the command line interface provided
by the Wireshark tool. To process the dataset and perform computations, we used a computer with an
Intel Core i7-3770 processor, with 16 GB of RAM running the Ubuntu 16.04 LTS operating system.

To implement the machine learning algorithms presented in Section 2.2, we used the scikit-learn10

library. Scikit-learn is an open-source library developed in Python that contains the implementation of
the most popular machine learning algorithms. However, after some preliminary trials, we shortlisted
the considered techniques. Specifically, in the perspective of investigating the feasibility of performing
an attack via off-the-shelf methods to unhinge the privacy of encrypted traffic generated by IVAs, we
discarded SVMs. Finally, we implemented a neural network with only two hidden layers using the
popular Fast.ai library. Fast.ai is a Python library built on top of Pytorch that allows to create and train
the most popular neural network models in a simpler way compared to Keras/Tensorflow.

3.2 Experimental Definition

Since we are interested in discovering “behavioural” knowledge from the encrypted traffic, we aimed to
detect if we can infer the presence of a human inside a building by the traffic generated by the smart
speaker. In more detail, we focused our attention on the behaviour of the microphone, thereby trying to
distinguish whether it is disabled or if it is sensing various situations, e.g., the execution of a query or a
quiet condition.

For the first round of tests, the microphone of the smart speaker was manually set off as to inves-
tigate the traffic exchanged between the device and the remote cloud. Then, for the second round, the
microphone was manually set on and the device put in a quiet condition, i.e., the microphone did not
receive any stimuli from the surrounding environment, which was completely without noise or voices.
For the last round of tests, we set the microphone on and we simulated the presence of humans speaking

7https://store.google.com/it/product/google_home_mini
8https://play.google.com/store/apps/details?id=com.google.android.apps.chromecast.app
9https://www.wireshark.org/docs/man-pages/tshark.html
10http://scikit-learn.org/
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each others or background noise. We underline that human talkers will not issue the “Ok Google” phrase
or will not inadvertently activate the smart speaker. In the following, we denote the different tests as
mic off for the case when the microphone is disabled, mic on and mic on noise for tests with the
microphone active and the smart speaker placed in a silent or noisy environment, respectively. To the
aim of having proper audio patterns, we selected videos from YouTube in order to stimulate the smart
speaker with a wide variety of talkers and settings (i.e., female and male speakers of different ages).

3.3 Data Handling

As said in the previous sections, we only collected traffic in a passive way thus we do not carry out any
operation intended to break the encryption scheme. In other words, we consider a worst-case scenario
where the attacker is not able to perform deep packet inspection or more sophisticated actions (e.g., pin-
ning of SSL certificates). In this case, the considered threat model deals with a malicious entity wanting
to infer the smart speaker state by only using statistical information observable within the encrypted net-
work traffic. To this aim, the attacker can compute indicators by using two different “grouping” schemes,
as depicted in Figure 3. Specifically, we computed the desired metrics by considering a suitable amount
of packets obtained according to the windowing mechanisms considered as follows:

• time spans of length ∆t (see Figure 3a);

• bursts of a fixed length of N (see Figure 3b).

t

t1 t2Δt =  t2-t1
(a) Packets grouped in a window of ∆t seconds

t

NN - 11 2

(b) Packets grouped in a window of N data units

Figure 3: Policies used for grouping packets to compute statistical information.

We point out that the size of the windows affects the amount of information to be processed by the
machine learning algorithm. In fact, even if the dataset sill remain unchanged, the number of windows
is directly proportional to the volume of information offered to the statistical tool (i.e., for each window
a statistical indicator is computed). Concerning the statistical indicators that an attacker can obtain from
the traffic exchanged between the IVA and the cloud, we consider:

• Number of TCP, UDP, and ICMP packets. They allow to quantify the composition of the traffic
in terms of observed protocols. UDP datagrams, for example, indicate the presence of voice infor-
mation by the QUIC protocol, whereas TCP segments may represent the exchange of additional
data such as multimedia.
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• Number of different IP addresses and TCP/UDP ports. The presence of different endpoints
could be used to spot interaction between the smart speaker and the IVA cloud, including actions
requiring to contact third-party entities or providers, IoT nodes, private datacenters or CDN facili-
ties.

• Per-window Inter packet time (IPT) or packet count. It determines how traffic is distributed
within the two windows used to group packets described in Figure 3. The aggressiveness of the
source could be used to reveal user activity or stimuli triggered by a vocal input.

• Average value and standard deviation of the TCP window. Those values describe the behaviour
of the flow in term of burstiness and bandwidth usage. Such information could lead to indications
about how the IVA and its cloud exchange data.

• Average value and standard deviation of the IPT. Similarly to the previous case, they can be
used to complete information inferred from the packet rate. The IPT could be used to recognize
whether a flow is generated by an application with some real-time constraints.

• Average value and standard deviation of the packet length. They hint the type of the application
layer; for instance, small packets can suggest the presence of voice-based activities requiring a low
(bounded) packetization delay.

• Average value and standard deviation of the TTL. It can be used to mark flow belonging to
different portions of the network and possibly indicating that the smart speaker has been activated
for a task also requiring the interaction with additional providers or actuators (e.g., IoT nodes).

We point out that many indicators are intrinsically “privacy leaking” as they allow a malicious ob-
server to infer some information about the smart home hosting the device [6]. For instance, counting
different conversations and the number of protocol data units in a timeframe could reveal the presence of
specific IoT nodes or the type of the requested operation, e.g., retrieving a summary of the news. At the
same time, considering such values could impact on the performance of the classification framework ow-
ing to the exploitation of interactions among the different architectural components, which are difficult
to forecast.

4 Experimental Results

In this section, we showcase the numerical results obtained in our trials. First, we show an overview of
the collected data set, then we present the performance of machine learning algorithms used to leak user
privacy with particular attention to the time required for the training phase.

4.1 Dataset Overview

As presented in Section 3, the dataset has been generated in a 9 day long measurement campaign com-
posed of three trials of 3 days with different conditions of the microphone of the smart speaker. Specif-
ically, for the mic off case, we collected 203,596 packets for a total size of 69 Mbytes. Instead, when
the microphone is active, we collected 216,456 packets in the mic on scenario and 282,656 packets
mic on noise one, for a total size of 74 and 173 Mbytes, respectively. The overall dataset has been
processed with the StandardScaler, thus leading to a statistical population with average equal to 0 and
standard deviation equal to 1.

Figure 4 shows the average values in each scenario that characterize the dataset. It is worth noticing
that the average packet length and the average size of the TCP window for the mic off and mic on
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(a) Mean Packet Length (b) Mean TCP window

(c) Mean IPT (d) Mean TTL

Figure 4: Average values for the Packet Length, TCP Window, IPT and TTL computed over the entire
dataset.

(a) Correlation of mic off (b) Correlation of mic on (c) Correlation of mic on noise

Figure 5: Correlation analysis on all the performed measurements for the TTL, IPT, TCP Window, and
packet lenght.

cases are very similar. Instead, for the mic on noise case, the average packet length doubles, whereas
the average TCP window size halves.

Figure 5 depicts the correlation matrices computed for each test composing the dataset. In general,
there are not strong relationships among the data. The only exception is when considering the packet
length and the TTL when the microphone is sensing noise. In fact, as shown in Figure 5c, a positive
correlation is present.
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4.2 Classifying the State of the Smart Speaker

We now show the results obtained when trying to classify the state of the smart speaker to conduct a
privacy leaking attack.

The first experiment aimed at investigating whether it is possible to identify if the microphone of the
smart speaker or the device hosting the IVA is turned on or off. We point out that this can also be viewed
as a sort of side-channel, where the attacker can identify if users are in the proximity of the device.

In this perspective, Figure 6 shows the accuracy of the various classifiers adopted to infer from
the traffic whether the microphone is ON or OFF, i.e., discriminate between mic on or mic off cases.
To better understand the performances, we also investigated when the different “grouping” strategies
presented in Section 2.2 are used to feed the machine learning algorithms.

(a) Grouping in a window of N packets (b) Grouping in a window of ∆t seconds

Figure 6: Accuracy of the classifiers for the mic off and mic on cases.

The best results are achieved by using the AdaBoost algorithm (denoted as AB in the figure). It is
important to note that, for identifying the state of the microphone with an acceptable level of accuracy,
the attacker has to collect about 500 s of traffic or 500 packets. Therefore, a real-time classification could
be not possible in the sense that the attacker has to wait a non-negligible amount of time before he/she
has the knowledge to launch the attack.

The second experiment aimed at discriminating between the two different behaviours of the sur-
rounding environment, i.e., the mic on and mic on noise states. The attacker can use such states to
determine if the smart speaker works in a silent environment or in the presence of noise, for example,
when people talk to each other or if the TV is turned on. In both cases, there is not a direct interaction,
that is, in the case of Google Home, any user did not issue the “Ok Google” phrase. Then, the malicious
entity cannot exploit “macro” features of the traffic, such as the number of TCP connections, the IP range
or the traffic volume [6, 34].

Figure 7 shows the obtained results. Compared to the previous experiment, to reach a good level of
accuracy, it is sufficient to use a reduced amount of packets. For example, in the case of the DT, good
degrees of accuracy are achieved by using time-windows with ∆t = 15 seconds or a burst of N = 20
packets to determine if the smart speaker is in the mic on or mic on noise states. From the perspec-
tive of understanding the security and privacy of voice-based appliances, this result reveals potential
exploitable hazards. Indeed, when the user does not directly interact with the smart speaker (e.g., the
“Ok Google” phrase is not issued), the traffic generated towards the remote cloud should be the same for
both the mic on and mic on noise conditions. In other words, it is expected that the network traffic
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(a) Grouping in a window of N packets (b) Grouping in window of ∆t seconds

Figure 7: Accuracy of the classifiers for the mic on and mic on noise cases.

(a) AdaBoost: ∆t = 500 - mic off vs mic on
(b) Decision Tree: N = 15 - mic on vs
mic on noise

Figure 8: Confusion matrix showing the best results obtained in different use-cases.

does not exhibit any signature. Even if we did not have access to the internals of the Google Home
Mini used in our testbed, the different traffic behaviours could be due to the fact that the smart speaker
is always in an “awake” mode and selected stimuli are sent to the cloud as to identify activation phrases
like “Ok Google” or “Hey Siri”. However, this could partially contradict the believing that such phrases
are entirely handled locally by the smart speaker or the IVA.

To assess the performances of the different classifiers in a comprehensive manner, Figure 8 shows
the confusion matrices of the AdaBoost and Decision Tree classifiers when used to discriminate between
the mic on - mic on noise cases. It is possible to notice how the confusion matrices show the goodness
of the chosen algorithms having the highest values distributed on the diagonal. Similar considerations
can be done for the other techniques, but they have been omitted here for the sake of brevity.

4.3 Analysis of the Training Time

The ability to perform a real-time classification is a critical factor for successfully launch an attack
targeting the physical space, and the time needed to train from scratch a statistical tool is of paramount
importance. Table 1 and Table 2 report the training times for each classifier when the different “grouping”
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Table 1: Training times for the used classifiers with different windows of length ∆t.

Training Time [s]
mic on - mic off mic on - mic on noise

∆t [s] kNN DT AB RF NN kNN DT AB RF NN

2 1.52 0.47 11.04 44.01 246.0 1.55 0.41 13.28 41.16 212.0
5 0.71 0.29 8.35 29.01 197.0 0.58 0.28 9.90 26.20 195.0
15 0.07 0.15 4.47 15.21 151.0 0.05 0.13 5.26 11.95 181.0
50 0.01 0.05 1.68 5.29 165.0 0.01 0.04 1.96 4.56 165.0
200 0.01 0.01 0.51 1.45 151.0 0.01 0.01 0.61 1.09 151.0
500 0.01 0.01 0.27 0.55 150.0 0.01 0.01 0.31 0.46 150.0
1000 0.01 0.01 0.19 0.29 150.0 0.01 0.01 0.21 0.30 150.0
1500 0.01 0.01 0.16 0.21 150.0 0.01 0.01 0.19 0.24 150.0
2000 0.01 0.01 0.15 0.19 150.0 0.01 0.01 0.17 0.21 150.0
2500 0.01 0.01 0.14 0.18 150.0 0.01 0.01 0.16 0.19 140.0

strategies described in Section 3.3 are used.
As shown in the tables, by increasing the window (i.e., the value for ∆t and N) the training time

decreases. This behaviour is justified by the fact that the classifiers are trained by using statistical in-
formation about the traffic provided by every single window. In other words, the larger the window, the
more packets are contained, meaning that less information is provided to the machine learning algorithm.
Such behaviour can also be spotted by comparing the tables. In fact, despite the used window scheme,
when the resulting amount of information is comparable, the algorithms behave in the same manner. We
point out that, high values for ∆t have been reported only for the sake of comparison, as they can be
hardly used in real-world attacks. Nevertheless, this allows to better understand that the traffic produced
by smart speakers when in idle or with the microphone in an inactive state is limited. Specifically, the
amount of time needed to collect a suitable amount of data to have statistical relevance could approach
one hour.

In general, classifiers such as DT and kNN turn out to be faster in training already for small values
of ∆t and N. Instead, techniques using NN are the most time-consuming. Specifically, the time needed
to train a NN remains constant above a certain threshold, mainly since the overheads for loading data,
allocate memory, etc., are greater than the time needed for performing computations. Therefore, in the
perspective of launching an attack, less sophisticated algorithms such as DT are the preferred choice.
Indeed, the higher speed accounts for reducing times to launch the attack, thus minimizing the chance of
being detected.

In this sense, the ability to inject additional information into the traffic to inflate the time needed to
train the machine learning mechanism could be considered a prime and valuable countermeasure.

5 Development of Countermeasures

In order to develop appropriate countermeasures and mitigation techniques, we carried out a set of tests
to identify the most important traffic features that could be used to feed machine-learning-capable threats.
To this aim, we considered all the high-level traffic features introduced in Section 3.3. The results are
summarized in Figure 9: for the sake of brevity, we only report results when using the two best classifiers
(i.e., AdaBoost with ∆t = 500 and Decision Tree with N = 15) as they represent the worst case scenario
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Table 2: Training times for the used classifiers with different windows of length N.

Training Time [s]
mic on - mic off mic on - mic on noise

N
[packet]

kNN DT AB RF NN kNN DT AB RF NN

2 21.07 1.46 38.14 158.81 231.0 13.27 1.01 25.84 101.26 257.0
5 1.47 0.62 13.97 63.17 227.0 1.82 0.78 21.08 78.31 238.0
15 0.04 0.18 4.76 18.16 171.0 0.05 0.22 6.91 21.55 181.0
50 0.03 0.05 1.44 4.78 157.0 0.01 0.05 2.02 5.62 161.0
200 0.01 0.01 0.42 1.04 151.0 0.01 0.02 0.58 1.33 151.0
500 0.01 0.01 0.23 0.45 150.0 0.01 0.01 0.31 0.58 150.0
1000 0.01 0.01 0.17 0.25 150.0 0.01 0.01 0.22 0.33 150.0
1500 0.01 0.01 0.15 0.19 150.0 0.01 0.01 0.18 0.24 150.0
2000 0.01 0.01 0.14 0.18 150.0 0.01 0.01 0.17 0.22 150.0
2500 0.01 0.01 0.13 0.17 150.0 0.01 0.01 0.16 0.20 150.0

for the victim (i.e., the attacker uses his/her best tools). To rank the importance of the features, we used
the Gini Impurity and Gini Gain metrics [22].

(a) AdaBoost: ∆t = 500 - mic off vs mic on (b) Decision Tree: N = 15 - mic on vs mic on noise

Figure 9: Importance of traffic features that can be used to leak information about smart speakers.

In the tests aimed at discriminating between the mic on and mic off states, we can notice that ac-
cording to Figure 9a the characteristics having a greater impact on the performance of the prediction
are: i) the average length of the packet, and ii) the number of UDP datagrams present within the consid-
ered window. Therefore, a possible countermeasure could be the insertion of suitable padding inside the
packets to normalize the average length as well as the standard deviation. As regards the number of UDP
packets, using a unique protocol for the transport could add another layer of privacy.

Besides, Fig 9b reports results when a statistical tool has to recognize the mic on and mic on noise

states. The best features, in this case, that better discriminate the state of a smart speaker are the aver-
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age value and standard deviation of the TCP window, the average TTL and the packet length standard
deviation. Consequently, a possible mitigation technique could be the alteration of the traffic with the
insertion of appropriate “noise”, for instance by exploiting some form of traffic camouflage or morphing
[20]. Furthermore, we advocate that a security-by-design revision of the architecture used to exchange
data between the IVA and the backend infrastructure could act as a suitable countermeasure for those
kinds of attacks. Specifically, as shown in Table 1, the reduced amount of traffic produced by the proto-
col architecture used for the communications between the device and the remote datacenter could make
difficult to collect the needed amount of data in a limited time frame. Therefore, further reducing the
traffic could not only represent an improvement in term of bandwidth optimization but can also partially
void the effectiveness of machine-learning-capable attacks. At the same time, avoiding constant traffic
patterns, for instance by deploying port hopping or the aforementioned morphing mechanisms, can be an
additional countermeasure built in the software layers responsible of implementing the network services
for exchanging data with the IVA.

Lastly, we underline the importance of this kind of analysis, not only in the perspective of under-
standing the risks of machine-learning-capable privacy threats. In fact, as shown in Figure 4 and Figure
9, the investigation of this class of threats can be used to anticipate the attacker. For instance, it turns
out that the TCP window can be considered a sort of privacy-leaking side channel, which transmits a
bit describing the state of the surrounding environment. Consequently, such behaviour should be taken
into account to prevent attacks or to deploy proactive defence mechanisms to poison the database of the
attacker (e.g., in an adversarial machine learning flavour) or to limit the effectiveness of reconnaissance
campaigns.

6 Conclusions and Future Works

In this paper, we investigated the feasibility of adopting machine learning techniques to breach the pri-
vacy of users interacting with smart speakers or voice assistants. Different from other works discovering
the presence of the user via intrinsically privacy-leaking activities (e.g., the activation of an IoT node and
the related traffic flow), we concentrated on discriminating how the internal microphone is used. Results
indicate the effectiveness of our approach, thus making the management of silence and noise époque as
major privacy concerns. Therefore, suitable traffic morphing or protocol manipulation techniques should
be put in place within the device or, at least, in home routers as to reduce the attack surface that can be
exploited by malicious entities.

Future work will aim at: i) refining our framework by considering smart speakers from other vendors
and formally testing the security properties of their protocols [7], and ii) investigating other privacy-
related attacks, such as identifying the type of queries submitted to profile the users. Besides, we are
working towards the implementation of a sort of “warden” able to normalize traffic generated towards
the IVA cloud.
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