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Abstract

Applying IoT technologies to cities and buildings can not only provide intelligent services to the users
but also better utilize resources. While developing applications for these two domains, there are sev-
eral challenges. Manageability, connectivity, and programmability are three of the major challenges.
This paper presents the design and study of programming applications for smart cities and smart
buildings. Data-driven programming model is designed to simplify the complexity on programming
applications on large scale devices. To reduce the complexity of inter-connecting large numbers of
devices, three message exchange models supported at WuKong, an intelligent virtual middleware
for IoT applications, are studied in this paper: cloud-based, NDN-based, and peer-to-peer message
exchange models. Cloud-based model is the most intuitive model but is only suitable for time-
insensitive applications. The other two models can support time sensitive applications: NDN-based
model can support large scale deployment but leads to higher hardware cost; peer-to-peer model can
be employed to the applications in the scale of building without heavy hardware cost. Our evaluation
results show that cloud-based model performs worse than the other two models when the number
of senders/receivers in the order of magnitude. Last but not the least, security is the foundation of
the smart city/building applications. CapeVM, the core of WuKong virtual middleware, takes the
advantage of ahead-of-time complier to prevent illeagal memory access and execution order without
excessive performance overhead.
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1 Motivation

Many market survey reports including the ones published by CISCO [5] and IDC [14] estimate that
the number of IoT devices will be more than number of populations in the world in few years. Today,
many of us may need to manage 3 to 7 digital devices and the total number of devices connected to the
network will grow to 50 billion in 2020. Among the 50 billion devices, large number of the devices
will be installed in the factories and commercial/residential buildings, on the vehicles, and on the street.
Smart building and smart cities are two representative use scenario for IoT/CPS. Well designed IoT/CPS
systems can reduce energy consumption, enhance safety in buildings and city, or can increase the com-
fortability in the building. In last few years, the research communities and industrial partners started to
study and investigate these two use scenarios to develop prototype or commercial services [15] to [11]
for these two scenario.

Applying IoT technologies to cities and buildings can not only provide intelligent services to the
users but also better utilize resources. While developing applications for these two domains, there are
several challenges. Managability, connectivity, and programmability are three of the major challenges.
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Managability refers to the capability of managing the services on large number of devices remotely;
programmability refers to the capability of composing services onto heterogeneous IoT devices. Con-
nectivity refers to the capability of exchanging data among heterogenous devices using heterogeneous
network protocols. Last, programmability refers to the capability to compose the services for large num-
ber of devices and to be replicated to same or simialar environment.

The aforementioned four challenges are in fact interwoven. They are boiled down to how to manage
these devices to assure that most, if not all, of them function correctly to conduct the deployed services
in large scale deployment. In particular, most of the users and developers for these devices do not have
the training to configure the services on these devices. The smart city services should be managed with
least amount of user efforts.

Although many works have been conducted on these two scenarios, many challenges remain open.
One major challenge for Smart City applications is to develop and manage applications on large number
of devices. Figure 1 shows an IoT example inside buildings: Intelligent Active Dynamic Signage System
(IADSS). In many existing building regulation, the directions for emergency evacuation point to the
closest emergency exit. However, during emergency, some of the emergency exits man not be available
and should not be used. In this example, there are two emergency exits in the building. When a fire
breaks out in front of the emergency exit on the right, this emergency exit should be blocked. Building
regulations in several countries already requires the emergency sign should be able to dynamically show
the directions. In order to show correct direction, the system has to collect real-time data from the
smoke detectors and computes the safe route when there is an emergency. Galea et al. [6] shows that the

Emergency ExitEmergency Exit

Figure 1: Intelligent Active Dynamic Signage System (IADSS)

dynamic signs can shorten the reaction time from 5.7s to 1.8s in the experiments. The example can be
extended to the scale of city or airport. In order to collect information in the city and building and display
information to the citizens, large number of devices and applications have to be installed physically. In
Frankfurt Airport, it took three years from 2003 to 2006 to install 8,000 passive RFID tags to smoke
detector and emergency lights [3]. Not mention to add intelligence to these devices and manage to put
these devices to work together.

Systems in this scale are not alone. There are 250,000 street lights and 12,500 intersection in New
York city [4]; there are 2,500 street intersection in Taipei city which has three millions resident in the
city [2]. Figure 2 is another popular example application for smart city: intelligent parking system.
Networked parking meters have be deployed in many cities to detect the occupancy of parking spaces and
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Figure 2: Intelligent Parking Systems

to collect parking fees. To provide coherent services to the drivers, the information should be collected
and shown in (near) real-time. One popular system architecture is to collect information on cloud server.
This approach subjects to performance bottleneck and is difficul to maintain. In September 2016, a
software glitch in public bike rental service in Taipei City took two days to reconfigure the 17,317 rental
stations so as to resume the service [17].

Programming for large scale systems is not trivial. In a smart city application, the system has to
coordinate millions or at least thousands of devices to work together. Among them, some are dumb
devices, some can do simple computation, and some can store and process several tera-bytes of data per
day. Although distributed computing and parallel programming have been studied for several decades,
programming a system in city scale has different challenges. The diversity of computing and communi-
cation capability among devices in smart city application is much great than that in distributed computing
and parallel programming.

To tackle managability, conectivity, and programmability, we propose an intelligent middleware for
smart city applications. The middleware provides a data-driven application development environment
and hardware-independent service composition method. Hence, the middleware can postpone the bind-
ing between logical services and physical devices until deployment phase. To tackle scalability chal-
lenge, the middleware provides three message exchange models to support large scale data collect and
exchange.

The reminder of this paper is organized as follow. Section 2 presents the middleware for smart
city applications, inculding development environment and deployment environment. Section 3 presents
three message exchange models for different smart city applications. Section 4 presents the performance
evaluation results of three messagin mechanism in WuKong. Finally, Section 5 concludes the paper.

2 Middleware for Service Development and Management

WuKong [12] is an intelligent middleware for designing and managing large scale IoT services. It con-
sists of two major components to fill the gap for developing and managing IoT applications: intelligent
run-time environment and flow-based developing framework. WuKong run-time environment is regarded
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as a Virtual Middle-Ware (VMW). The reasons for this are two-folds. First, as IoT applications are de-
ployed at different locations and evolve over time, it is very likely that the systems use devices (including
sensor, actuators, and computing platforms) developed by different manufactures and communicating via
different network protocols. Having virtual devices allow applications to run on heterogeneous devices
and networks. Second, when the system needs to be reconfigured, the process of reprogramming devices
will be less expensive by using a virtual machine design. In addition, the line of codes will be less since
the virtual devices can offer higher level primitives specific for IoT applications.

Flow-based developing framework provides a high level development environment to design hard-
ware independent IoT applications. The goal of this framework is to allow domain experts to design their
IoT applications without complete knowledge of the hardware devices and network protocols to conduct
the services. In this framework, the users compose the services using data-flow model and pre-defined
services. The framework then generates the executable code for selected devices using distributed com-
puting model.

2.1 Run-time environment of WuKong devices

Most of the IoT application development environments are hardware dependent and require the devel-
opers to specify hardware properties while developing IoT/Smart city applications. For example, the
operating system if any, CPU type, and port number for the sensors should be known. In order to reduce
management overhead, the developed system may be required to use identical devices and platforms,
or to store configuration files for each type of platforms. It is certainly impractical in large scale and
evolving smart city systems. WuKong run-time virtualizes IoT devices by deploying virtual machines
to these resource limited devices. This model does not only provide a hardware independent runtime
environment but also enhance reliability and security for IoT devices.

Figure 3 shows the run-time environment on WuKong-enabled IoT devices. Figure 3(a) shows the
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Figure 3: WuKong Runtime on IoT devices

runtime for micro-controller-based IoT devices such as Arduino MEGA2560, which is powered by Atmel
AVR ATmega2560 micro-controller. On this type of devices, there is no operating system and WuKong
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run-time starts when the system is turned on. WuKong runtime consists of communication component,
master protocol component, native profiles, and Darjeeling JVM. Communication component is respon-
sible to communicate with radio interface on the device so as to send and receive messages to/from other
devices; master protocol component is responsible to communicate with WuKong master, which will be
discussed later, so as to provide device properties, and to download applications from WuKong master.
Native profiles refer to the service adapter (or device driver) of hardware components such as sensors
and actuators. Last, Darjeeling JVM is the Java Virtual Machine to execute Java applications. Darjeeling
VM supports limited Java APIs for embedded devices and is a stack-based VM. Different from tradi-
tional JVM, Darjeeling VM uses AOT (Ahead-of-Time) compiler, rather than JIT compiler, to reduce the
memory and storage usage requirements. The memory footprint of DarjeelingVM is less than 80KB and
the optimized Java executable code are only 86% slower than optimized native C executable code [13].
(Other Java JIT compilers lead to 30x to 200x slower, compared to optimized C implementation.)

2.2 WuKong Development Environment

WuKong development environment is a graphical programming environment for flow-based program-
ming. In WuKong development environment, the users select appropriate pre-defined service class,
called WuClass, to compose their applications. One WuClass can represent primitive sensing services
such as temperature sensing and motion sensing, primitive actuation services such as buzz and display,
or programmable decision services using Python, Java, or C.

Figure 4 shows the flow-based development environment in WuKong. In the development environ-

Predefined Service Class

Service Service

Data flow links

Service

FBP Programming Canvase

Figure 4: Example application in WuKong FBP Environment

ment, the developers drag and drop predefined service components, named WuClass in WuKong, and
data links to FBP programming canvas shown on the right. The example shows a smoke detector and
evacuation sign application, which detects smoke event using ’Smoke Sensing Services’ shown on the
left and displays evacuation route using ‘Display Services’ shown on the right. The service in the center
represents a fire agent to intelligently find the safe evacuation route. Each WuClass has predefined prop-
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erties, which can be read-only, write-only, or read/write. In this example, the alarm property in Smoke
Sensing Service WuClass is a read-only property; the content property in Display Service WuClass is
a write-only property. The directed lines between WuClasses represent directed data flows from one
WuClass to another one.

Application developed in WuKong FBP environment only defines the services and logical flows for
the application. The service class can specify the minimum requirements of hardware devices to conduct
the service. The application shown in Figure 4 can be deployed to one edge device or multiple devices
connected by computer networks or wires. We discuss the deployment process in next subsection.

2.3 Deployment-Time Service Mapping

In WuKong middleware, WuMaster is responsible for managing the services and devices in an area,
similar to a wireless access point for a wireless network. When a new device starts, it looks for WuMaster
in the network and registers itself to the WuMaster. The WuMaster then starts the discovery process to
collect hardware properties from the device. These properties will be stored on WuMaster for service
management.

WuKong middleware explicitly separates the deployment phase from development phase. Figure 5
shows the process of mapping an FBP application to hardware devices and that of deploying applications
to the devices. When the application is ready to be deployed, the application is downloaded to WuMaster

Service Mapping 
Process

FBP 
Application

Discovery 
Results

Hardware 
Dependent Code 

Generation

Device 
Profiles

Code Upload

Figure 5: Flow for Service Mapping and Application Deployment on WuKong Master

from application store on the cloud. The first step for application deployment is to map logical services,
i.e., WuClass, to physical devices. The servier installer or developers can choose different mapping
algorithm to map WuClass in FBP applications to meet different QoS requirements. For example, one
may ask to use minimal number of devices; the other may ask to minimize the network traffic in the
system. WuMaster will map services to physical devices based on the selected mapping policies. The
discovery results are used to search for capable hardware devices to conduct WuClass. Moreover, the
mapping service also creates messaging links from the sending device to the receiving device for each
data link defined in FBP application.

The second step generates the executable code for the devices. (Many of the edge devices are not
able to generate executable code from the source codes of high-level programming languages.) Each
IoT device may have different physical sensing and actuation devices, and supports different software-
enabled services. These capabilities are specified in device profiles. WuMaster generates the code based
on the device profiles. The last step is to upload the code to the devices using computer networks.
WuMaster communicates with the Master Protocol component, shown in Figure 3, to upload the code.
The uploaded code will be executed on top of WuKong Run-Time environment. Note that WuClass
implemented in Python can only be uploaded to microprocessor-based devices.
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3 Data Exchange Models for Smart City Application

To develop applications for large scale deployment, one has to coordinate the data exchange among the
devices. As mentioned earlier, the diversity of devices in smart city systems is much greater than that in
traditional distributed systems. In smart city systems, there are edge devices which have sensors installed
or can execute actuation commands; there are gateway devices which can aggregate and process data,
or can make intelligent decision. It is not scalable to configure the communication links on each of the
devices. In this section, we study three different communication models for smart city applications. They
are cloud-based message exchange model, named-data message exchange model, and dynamic data link
message exchange model.

3.1 Cloud-based Message Exchange Model

Cloud-based message exchange model uses the servers on the cloud to exchange messages among ser-
vices. Despite the communication delay between edge devices and cloud server, the model is well
accepted due to its simplicity.

In this model, each device sends its message along with data properties to the cloud server and
requests information/data from the cloud server by specifying appropriate data properties. IoT services
provided by Amazon Web Services is one example of this model.

Figure 6 shows an example of cloud-based messaging FBP application in WuKong. This example

Figure 6: Example WuKong Application Using Cloud-Based Message Exchange Model

is an extension of the single device FBP application shown in Figure 4. Rather than only using the data
collected by local smoke sensing service, the Fire Agent WuClass also subscribes the smoke sensing
services nearby and publishes its own smoke events to the cloud. As the results, the Fire Agent can not
only sound alerts according to local smoke event but also compute the safe evacuation route based on the
information collected by other smoke sensing services in the building.

The cloud service is usually known at development phase. Hence, the developers can configure the
cloud service before deployment. As a result, all the edge devices running the deployed application send
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data the pre-configured cloud services. There is no deployment-time or run-time configuration in this
model.

While publishing data to the cloud server, the Fire Agent WuClass specifies its location information
and time-stamp of the published data. The location information can be a property of the edge devices,
which can either be configured by WuMaster or acquired from localization services such as LBeacon [8].
While subscribing data from the cloud server, the Fire Agent WuClass specifies the information of inter-
ests using location query.

This model is suitable for sharing sensing data for large number of data subscribers. One example is
air quality monitoring. Air quality sensors can be installed in a city or state to monitor air quality. The
users can use smartphones or other networked devices to monitor air quality. In this scenario, the number
of sensors are limited but the number of users are not. It also is suitable for the applications requiring
global data to make decision. Route planning for vehicle navigation requires the traffic condition from
starting location to destination location to plan the best route.

3.2 NDN-Based Message Exchange

Named-data network [19] takes advantage of the storage services in the network to store data having
short life-time and shared among nearby or limited number of devices. As a result, the data are not
exchanged via cloud server so as to avoid traffic congestion on server sides and to reduce the amount of
data to be stored.

Figure 7 shows an example of NDN-based messaging FBP in WuKong. Compared to the one shown

Figure 7: Example WuKong Application Using NDN-Based Message Exchange Model

in Figure 6, the NDN Publish and Subscription WuClasses are used to publish and subscribe smoking
events. In named-data network, the gateways to publish and subscribe data are not identical for all edge
devices in the network. Hence, when the application is started on an edge device, NDN Publish and
Subscription WuClass in the application will first discover NDN services on the network. Then, the
discovered NDN gateways will be stored as a property of NDN publisher and subscription WuClass.
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NDN is mainly designed to search and cache data having short life time or shared by a group of
nearby devices. Hence, it adapts a pull model to request data from publishers and NDN gateway, which is
different from traditional publish/subscription model. In many smart city applications such as intelligent
parking and fire evacuation shown above, the subscribers are interested in the events at certain location
whenever occurs.

To support traditional publish/subscription model, WuKong designs a reverse NDN mechanism. Fig-
ure 8 shows the flow of reverse NDN to register the interest and to publish updated data. In reverse
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Figure 8: Data flow for reverse NDN

NDN, the subscribers on edge devices publish the interests to their upstream gateways. When an NDN
gateway receives an interest request, it checks if any cached data matches the received interest to be
returned. If not, the interest will not only be forwarded to its upstream gateway but also be stored in the
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gateway. While forwarding the interest, the gateway also includes its own incoming interest face, i.e.,
the interface to send/receive interest, to receive interest from the upstream gateway when available. The
process repeats until named data is founded or the interest reaches the data producer on edge devices.
The data producer of interest will store the interest face received from NDN gateway as so to publish
new data when available. Then, the requested data will be sent back to the subscribers along the same
path. Normal NDN protocol ends after the data of interest is received on the subscriber.

In reverse NDN, the registration table allows the data producers to push data when there is any change
or update interval expires. To push data, the data producer embeds the data value in interests and sends
the interest to the face stored in registration table.

NDN-based messaging service is suitable for the applications only requiring local, rather than global,
information to make decision. For example, an intelligent parking system showing the suggested direc-
tion to go only needs the number of available parking spaces nearby. It is not necessary to know that
parking spaces are available few mile/kilometers away.

3.3 Peer-to-Peer Message Exchange

The third model is to create peer-to-peer data links among selected devices. This approach eliminates the
needs of messaging brokers, either cloud server or NDN gateway, which require complete IP protocols
to be deployed and full-brew operating systems, in the system. When the edge devices in the network
have limited resources, it may not be practical to use the two aforementioned messaging models.

Figure 9 shows the intelligent smoke detector using peer-to-peer message exchanging model. This

Figure 9: Example WuKong Application Using Peer-to-Peer Message Exchange

model also uses publish/subscription model for message exchange. However, there is no (physical and
logical) messaging brokers in the network. Hence, the peer-to-peer data links are created at service
mapping phase based on the publish and subscription topics specified in the WuClass. The location
framework in WuKong allows the developers to specify the location using wildcard expression and range
function. For example, one may subscribe to the information published by the services deployed on the
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same floor or in the same room. Based on the publish/subscription requirements, the service mapper on
WuMaster generates location-dependent data link tables for each device. This model is suitable for the
system in which the mobility of the devices is very limited. Every change on available edge devices will
trigger WuMaster to regenerate parts of the link tables.

In this model, WuMaster may create one communication link between two edge devices on two
ends of one data link. Hence, each of the communication link is a peer-to-peer communication link.
Consequently, one property update can be duplicated to multiple communication links when there are
multiple receivers for the properties. Hence, the challenge of this model is how to minimize the network
traffic in the networks, which are closely related to energy consumption on the edge devices. The problem
can be formulated as follow.

Suppose that data link li, j for 0 < i, j < N where N is the number of WuClass in the FBP represents
the data link from WuObject oi, which is an instance of a WuClass Ci, to WuObject o j and the minimal
length of data link li, j is mi, j where mi, j > 0 and mi, j = ∞ if a data link is not defined from WuClass
Ci to WuClass C j. Link table on edge device Dk, denoted as Tk, stores the communication link from
WuObject deployed on device Dk to its destinations to transmit the property values. Entry ek

i, j in link
table Tk represents the data link from WuObject oi to WuObject o j.

Given a set of data links L = {li, j | mi, j 6= ∞ for 0 < i, j < N and i 6= j.} in an FBP, the challenge is
to generate a set of link tables {Tk | Tk for 0 ≤ k ≤ M} where M is the number of devices selected by
service mappers such that the total length of communication links are minimized subject to the following
constraints.

• if li, j exists, there must exist a path from WuObject oi to WuObject o j.

The above problem can be solved by minimal spanning tree algorithm to find an optimal results.
The link tables for each edge device will be generated based on the solution to minimize the redundant
message transmission.

4 Performance Evaluation

To study the performance of these three message exchange models, we evaluate these three models using
simulations.

4.1 Experimental Settings

The experiments are designed to simulate a system having 10,000 edge devices as either sensors or actu-
ators. Edge devices are micro-controller-based devices such as Arduino MEGA2560 or similar devices.
Intermediate devices serve communicaiton gateways or network access points. They can function as
NDN gateway to cache data and store interest table. Hence, they are usually micro-processor-based
devices such as Intel Edison, Raspberry Pi, or similar platforms.

To extend the coverage, the experiments simulate two different use scenarios. The first use scenario
has only one sender to send messages to multiple receivers and the number of receivers range from
10 to 10,000. This scenario serves as the base to understand the performance of three data exchange
models. The second scenario simulates the applications in smart cities and smart buildings. It has
multiple senders, each of which sends messages to multiple receivers in the network. In the second
scenario, one receiver may receive messages from multiple senders.

Without loss of generality, the star topology is used to connect all the edge devices to the Internet. In
the star topology, each intermediate device or network gateway has 10 downstream devices participating
the systems. (It may connect to more than 10 devices but only 10 of them participating the system.)
Below are other parameters used to simulate the system.
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Table 1: Parameters for Experimental Settings
Parameters Values
Number of edge devices 10,000
Bandwidth of Wireless net-
works

100 mbps

Average propagation Delay
on gateways and networks

1ms, 0.8 ms, 0.64 ms, 0.51
ms, and 0.41 ms

Ratio of sender/receiver 1/10, 1/100, 1/1000,
1/10,000

Number of hops between
sender/receivers

1, 3, 5, 7

Date size 1Kb

Two performance metrics are measured in the simulation. Average end-to-end delay measures the
time delay to exchange one message from data source to destination; Total message count measures the
number of messages sent during the experiments.

4.2 Evaluation Results

The first scenario has single sender and multiple receivers. Figure 10 shows the average end-to-end delay
in log scale from the sender to multiple receivers when cloud-based message exchange model is used.
The horizontal axis represents the number of hops between sender and receiver. Where there is only one
hop, the sender and receiver are located in the same subnetwork; when there are seven hops, the sender
and receiver can be located in different countries/states. In cloud-based model, the sender sends the data
to the server which is located on the top of the star topology; the receivers receive messages from the
server. The results show that the end-to-end delay is not sensitive to the number of hops. However, it
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Figure 10: Average end-to-end delay for cloud-based model (single sender)

is very sensitive to the number of receivers in the applications. When the number of receivers increase
from 10 to 10,000, the average end-to-end delay increases increased from 10ms to 4,000ms in average.
It shows that when the receivers are designed to receive the sensed data simultaneously, the delay will
be significant. However, the delay can be shorten if the receivers receive the change asynchronously.
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In addition, the delays are shorter when the number of hops increase, i.e., the receivers are not located
in same subnetwork. This is because the network traffic are scattered in the Internet. In the air quality
monitor application, the users, using smartphone or web browsers, check the latest monitor results at
different time instants and may not experience significant delays. Figure 11 shows the results for NDN-
based model. When NDN-based model is used, the average end-to-end delays are significantly shorter
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Figure 11: Average end-to-end delay for NDN-based model

than that in cloud-based model. The cached mechanism can greatly shorter the path from the sender
to the receiver. When the sender and receivers are located in same subnetwork, the average end-to-end
delays are less than 50ms for 10,000 receivers. When the number of hops between sender and receiver
increase, the average end-to-end delays do increase. This is because the data have to be transmitted to
the NDN gateways, which are multiple hops away from the sender. However, the increase is less than
50%.

Figure 11 shows the results for peer-to-peer model. The results show that the average end-to-end in
this model are sensitive to the number of receivers, similar to the cloud-based model. This is because
the peer-to-peer model has to conduct one peer-to-peer transmission for each receiver. When the number
of hops increase, the delays remain the same. This is because each transmission always starts from the
sender to the receiver. The peer-to-peer model does outperform the other two models when the number
of receivers are small. The results suggest that the peer-to-peer model is suitable for the scenario that
each sender sends data to small number of nearby receivers.

Figure 13 shows the average end-to-end delay when there are 100 receivers under three different
models. The results show that cloud-based message exchange model leads to long delay time due to
the processing and transmission bottleneck on the server. However, the delays become shorter when the
receivers are scattered in the Internet. The other two models have very stable and similar performance
for 100 receivers.

The second scenario is multiple senders for multiple receivers. Figure 14 shows the results for this
scenario. The horizontal axis presents the ratio of overlapped receivers for each sender. When there is
no overlap, each receiver only requests data from one sender. Overlap ratio refers to the percentage of
receivers for one sender also request data from another sender. When the ratio is greater than 50%, one
receiver may request data from more than three senders. In the simulation, there are 1,000 senders and
9,000 receivers. When there is no overlap, each sender have nine receivers. The results show that all
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Figure 12: Average end-to-end delay for peer-to-peer model
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Figure 13: Average end-to-end delay for 100 receivers

the models lead to longer delay when the overlap ratio increases. NDN-based model takes advantage of
the cached data to reduce the amount of message transmission and shorten the end-to-end delay when
messages have to replicated to many receivers; however, peer-to-peer model has to transmit the messages
for each receiver.

The results show that NDN-based model outperforms the other two models to provide short aver-
age end-to-end delay for majorities of the scenario. However, the model requries the gateway to cache
the data and store interests. In other words, the network infrastructure support is required. The other
two models do not require infrastructure support. When there is no need timing requirement, i.e.,
synchronous messages, the cloud-based model has reasonable end-to-end delays across the network.
Peer-to-peer model is suitable for the applications requiring synchronous messages among senders and
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Figure 14: Average end-to-end delay for multiple senders and receivers

receivers.

5 Summary

This paper presents the messaging mechanisms and safety mechanism developed in WuKong middle-
ware so as to tackle four challenges of deploying IoT applications for smart cities and buildings. The
three messaging mechanisms are cloud-based, NDN-based, and peer-to-peer message exchange models.
Cloud-based messaging mechanism has low implementation overhead but greatest transmission delay. It
is not recommended for time-sensitive IoT applications. On the other hands, the other two mechanisms
are not sensitive to the numbers of devices in the networks.
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