Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3408207.3408276guideproceedingsArticle/Chapter ViewAbstractPublication PagesspringsimConference Proceedingsconference-collections
research-article
Free access

The effects of filtering on high frequency oscillation classification

Published: 19 May 2020 Publication History

Abstract

High frequency oscillations (HFOs) have been used for seizure prediction and are promising biomarkers of epileptogenesis. However, detecting HFOs is time consuming and subjective, prompting research into automated detection and classification pipelines. We aim to understand how different EEG filtering methods impact these pipelines and harmonize detections from the same data when preprocessed differently. We preprocessed EEG with two different filters and then detected events with the short time energy (STE) detector and compared common detections. We applied t-distributed stochastic neighbor embedding (t-SNE) to the datasets and compared embeddings then investigated if shifting commonly detected events prior to t-SNE helped standardize embeddings. The finite impulse response (FIR) and infinite impulse response (IIR) filters achieved a Cohen's Kappa coefficient of 0.8962 after shifting, reflecting a high level of agreement. The t-SNE embeddings were similar only when data were shifted prior to embedding. Feasible solutions to this shifting problem are addressed.

References

[1]
Agrawal, A., J. Timothy, L. Pandit, and M. Manju. 2006. "Post-traumatic epilepsy: An overview". Clinical Neurology and Neurosurgery, vol. 108, pp. 433--439.
[2]
Baker, S. N., C. Gabriel, and R. N. Lemon. 2003. "EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts". The Journal of Physiology, vol. 550, pp. 529--534.
[3]
Birjandtalab, J., M. B. Pouyan, and M. Nourani. 2016. "Nonlinear dimension reduction for EEG-based epileptic seizure detection". In Proceedings of the 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). pp. 595--598.
[4]
Cimbálník, J., A. Hewitt, G. Worrell and M. Stead. 2018. "The CS algorithm: A novel method for high frequency oscillation detection in EEG." Journal of Neuroscience Methods, vol. 293, pp. 6--16.
[5]
Crépon, B., V. Navarro, D. Hasboun, S. Clemenceau, J. Martinerie, M. Baulac, C. Adam, and M. Le Van Quyen. 2009. "Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy". Brain, vol. 133, pp. 33--45.
[6]
Delorme, A. and S. Makeig. 2004. "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis". Journal of Neuroscience Methods, vol. 134, pp. 9--21.
[7]
Dirodi, M., E. Tamilia, P. E. Grant, J. R. Madsen, S. M. Stufflebeam, P. L. Pearl, and C. Papadelis. 2019. "Noninvasive Localization of High-Frequency Oscillations in Children with Epilepsy: Validation against Intracranial Gold-Standard". In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
[8]
Duncan, D., P. Vespa, A. Pitkänen, A. Braimah, N. Lapinlampi, and A. W. Toga. 2019. "Big data sharing and analysis to advance research in post-traumatic epilepsy". Neurobiology of Disease, vol. 123, pp. 127--136.
[9]
Frauscher, B., F. Bartolomei, K. Kobayashi, J. Cimbalnik, M. A. van 't Klooster, S. Rampp, H. Otsubo, Y. Höller, J. Y. Wu, E. Asano, J. Engel, P. Kahane, J. Jacobs, and J. Gotman. 2017. "High-frequency oscillations: The state of clinical research". Epilepsia, vol. 58, pp. 1316--1329.
[10]
Garner, R., M. La Rocca, P. Vespa, N. Jones, M. M. Monti, A. W. Toga, and D. Duncan. "Imaging biomarkers of posttraumatic epileptogenesis". Epilepsia, vol. 60, pp. 2151--2162.
[11]
Gliske, S. V., Z. T. Irwin, K. A. Davis, K. Sahaya, C. Chestek, and W. C. Stacey. 2016. "Universal automated high frequency oscillation detector for real-time, long term EEG". Clinical Neurophysiology, vol. 127, pp. 1057--1066.
[12]
Gliske, S. V., W. C. Stacey, K. R. Moon, and A. O. Hero. 2016. "The intrinsic value of HFO features as a biomarker of epileptic activity". In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[13]
Jacobs, J., P. LeVan, R. Chander, J. Hall, F. Dubeau, and J. Gotman. 2008. "Interictal high-frequency oscillations (80-500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain". Epilepsia, vol. 49, pp. 1893--1907.
[14]
Li, L., M. Patel, J. Almajano, J. Engel Jr, and A. Bragin. 2018. "Extrahippocampal high-frequency oscillations during epileptogenesis". Epilepsia, vol. 59, pp. e51--e55.
[15]
Liu, S., C. Gurses, Z. Sha, M. M. Quach, A. Sencer, N. Bebek, and N. F. Ince. 2018. "Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy". Brain, vol. 141, pp. 713--730.
[16]
Liu, S., N. F. Ince, A. Sabanci, A. Aydoseli, Y. Aras, A. Sencer, and C. Gurses. 2015. "Detection of high frequency oscillations in epilepsy with k-means clustering method". In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER).
[17]
McHugh M. L. 2012. "Interrater reliability: the kappa statistic". Biochemia medica, vol. 22, pp. 276--282.
[18]
Navarrete, M., C. Alvarado-Rojas, M. Le Van Quyen, and M. Valderrama. 2016. "RIPPLELAB: A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals". PLOS ONE, vol. 11.
[19]
Pearce, A., D. Wulsin, J. A. Blanco, A. Krieger, B. Litt, and W. C. Stacey. 2013. "Temporal changes of neocortical high-frequency oscillations in epilepsy". Journal of Neurophysiology, vol. 110, pp. 1167--1179.
[20]
Smart, O., and M. Chen. 2015. "Semi-automated patient-specific scalp EEG seizure detection with unsupervised machine learning". In Proceedings of the 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
[21]
Spring, A. M., D. J. Pittman, Y. Aghakhani, J. Jirsch, N. Pillay, L. E. Bello-Espinosa, C. Josephson, and P. Federico. 2017. "Interrater reliability of visually evaluated high frequency oscillations". Clinical Neurophysiology, vol. 128, pp. 433--441.
[22]
Staba, R. J., C. L. Wilson, A. Bragin, I. Fried, and J. Engel Jr. 2002. "Quantitative Analysis of High-Frequency Oscillations (80--500 Hz) Recorded in Human Epileptic Hippocampus and Entorhinal Cortex". Journal of Neurophysiology, vol. 88, pp. 1743--1752.
[23]
Van Der Maaten, L. 2015. "Accelerating t-SNE using Tree-Based Algorithms". Journal of Machine Learning Research. vol. 15. pp. 3221--3245.
[24]
Van Der Maaten, L. and G. Hinton. 2008. "Visualizing Data using t-SNE". Journal Machine Learning Research. vol. 9. pp. 2579--2605.
[25]
Vespa, P. M. and M. M. Monti. 2013. "Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury". NeuroImage: Clinical, vol. 3, pp. 396--404.
[26]
Worrell, G. A., A. B. Gardner, S. M. Stead, S. Hu, S. Goerss, G. J. Cascino, F. B. Meyer, R. Marsh, and B. Litt. 2008. "High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings". Brain, vol. 131, pp. 928--937.
[27]
Worrell, G. A., L. Parish, S. D. Cranstoun, R. Jonas, G. Baltuch, and B. Litt. 2004. "High-frequency oscillations and seizure generation in neocortical epilepsy". Brain, vol. 127, pp. 1496--1506.
[28]
Zelmann, R., F. Mari, J. Jacobs, M. Zijlmans, F. Dubeau, J. Gotman. 2012. "A comparison between detectors of high frequency oscillations". Clinical Neurophysiology, vol. 123, pp. 106--116.
[29]
Zijlmans, M., P. Jiruska, R. Zelmann, F. S. S. Leijten, J. G. R. Jefferys, and J. Gotman. 2012. "High-frequency oscillations as a new biomarker in epilepsy". Annals of Neurology, vol. 71, pp. 169--178.
[30]
Zuo, R., J. Wei, X. Li, C. Li, C. Zhao, Z. Ren, and X. Zhang. 2019. "Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network". Frontiers in Computational Neuroscience, vol. 7, pp. 82501--82511.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
SpringSim '20: Proceedings of the 2020 Spring Simulation Conference
May 2020
791 pages
ISBN:9781713812883

Publisher

Society for Computer Simulation International

San Diego, CA, United States

Publication History

Published: 19 May 2020

Author Tags

  1. EEG
  2. epilepsy
  3. finite impulse response filter
  4. high frequency oscillations
  5. infinite impulse response

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 268
    Total Downloads
  • Downloads (Last 12 months)56
  • Downloads (Last 6 weeks)12
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media