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Abstract. Rusins Freivalds was one of the first researchers who introduced methods (later called
fingerprinting) for constructing efficient classical randomized and quantum algorithms.
Fingerprinting and cryptographic hashing have quite different usages in computer science, but
have similar properties. Interpretation of their properties is determined by the area of their usage:
fingerprinting methods are methods for constructing efficient randomized and quantum algo-
rithms for computational problems, while hashing methods are one of the central cryptographical
primitives.
Fingerprinting and hashing methods are being developed from the mid of the previous century,
while quantum fingerprinting and quantum hashing have a short history.
In the paper we present computational aspects of quantum fingerprinting, discuss cryptographical
properties of quantum hashing, and present the possible use of quantum hashing for quantum
hash-based message authentication codes.
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1 Introduction

Fingerprinting and hashing are well-known techniques. Fingerprinting is widely used
in various meanings in different areas of computer science. We restrict ourselves to the
area of complexity theory where the notion of fingerprinting is more or less formalized.
Cryptographic hashing allow to securely present objects and mathematically is more
formalized.

Classical and quantum fingerprinting. Fingerprinting in complexity theory is a proce-
dure that maps a large data item to a much shorter string, its fingerprint, that identifies
the original data (with high probability). The key properties of classical fingerprinting
methods are: i) they allow to build efficient randomized computational algorithms and
ii) the resulting algorithms have bounded error (Motwani and Raghavan, 1995).
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Rusins Freivalds was one of the first researchers who introduced methods (later
called fingerprinting) for constructing efficient randomized algorithms (which are more
efficient than any deterministic algorithm) (Freivalds, 1977, 1979).

In quantum case fingerprinting is a procedure that maps classical data to a quantum
state that identifies the original data (with high probability). One of the first applications
of the quantum fingerprinting method is due to Ambainis and Freivalds (1998): for a
specific language they have constructed a quantum finite automaton with an exponen-
tially smaller size than any classical randomized automaton. An explicit definition of
the quantum fingerprinting was introduced by Buhrman et al. in (2001) for constructing
efficient quantum communication protocol for equality testing.

Cryptographic quantum hashing. Cryptographic hashing has a lot of fruitful applica-
tions in cryptography. Note that in cryptography functions satisfying (i) one-way prop-
erty and (ii) collision resistance property (in different specific meanings) are called hash
functions and we propose to do so when we are considering cryptographical aspects of
quantum functions with the above properties. So we suggest to call a quantum function
that satisfies properties (i) and (ii) (in the quantum setting) a cryptographic quantum
hash function or just quantum hash function. Note however, that there is only a thin line
between the notions of quantum fingerprinting and quantum hashing. One of the first
considerations of a quantum function (that maps classical words into quantum states) as
a cryptographic primitive, having one-way property and collision resistance property is
due to (Gottesman and Chuang, 2001), where the quantum fingerprinting function from
(Buhrman et al., 2001) was used. Another approach to constructing quantum hash func-
tions from quantum walks was considered in (Li et al., 2013a; Li et al., 2013b; Yang et
al., 2016), and it resulted in privacy amplification in quantum key distribution and other
useful applications.

The paper organization. In Section 3 we consider quantum fingerprinting as a map-
ping of classical inputs to quantum states that allows to construct efficient quantum
algorithms for computing Boolean functions. We consider the quantum fingerprinting
function from (Buhrman et al., 2001) as well as the quantum fingerprinting technique
from (Ablayev and Vasiliev, 2009). The latter was motivated by the paper (Ambainis
and Freivalds, 1998) and its generalization (Ambainis and Nahimovs, 2008).

Section 4 is based on results on quantum hashing developed in our research group.
We define a notion of quantum hash function which is quantum one-way function and
quantumly collision resistant function. We show that one-way property and collision
resistance property are correlated for a quantum hash function. The more the function is
one-way the less it is collision resistant and vice versa. We show that such a correlation
can be balanced.

We present an approach for quantum hash function constructions by establishing
a connection with small biased sets (Naor and Naor, 1990) and quantum hash func-
tion constructions: we prove that small sized ε-biased sets allow to generate balanced
quantum hash functions. Such a connection adds to the long list of small-biased sets’
applications.

In particular it was observed in (Naor and Naor, 1990; Ben-Sasson et al., 2003) that
the ε-bias property is closely related to the error-correcting properties of linear codes.



862 Ablayev et al.

Note that the quantum fingerprinting function from (Buhrman et al., 2001) is based on
a binary error-correcting code and so it solves the problem of constructing quantum
hash functions for the binary case. For the general case ε-bias does not correspond
to Hamming distance. Thus, in contrast to the binary case, an arbitrary linear error
correcting code cannot be used directly for quantum hash functions.

Next, recall that any ε-biased set gives rise to a Cayley expander graph (Alon and
Roichman, 1994). We show how such graphs generate balanced quantum hash func-
tions. Every expander graph can be converted to a bipartite expander graph. The gener-
alization of these bipartite expander graphs is the notion of extractor graphs. Such point
of view gives a method for constructing quantum hash functions based on extractors.
This construction of quantum hash functions is applied to define the notion of keyed
quantum hash functions. The latter is used for constructing quantum hash-based mes-
sage authentication codes (QMAC). The security proof of QMAC is based on using
strong extractors against quantum storage developed by Ta-Shma (2009) .

2 Preliminaries

Recall that mathematically a qubit is described as a unit vector in the two-dimensional
Hilbert complex space H2. Let s ≥ 1. Let Hd be the d = 2s-dimensional Hilbert space,
describing the states of s qubits. Another notation for Hd is (H2)⊗s, i.e. Hd is made
up of s copies of a single qubit space H2

(H2)⊗s = H2 ⊗ · · · ⊗H2 = H2s .

Conventionally, we use notation |j〉 for the vector from Hd, which has a 1 on the
j-th position and 0 elsewhere. An orthonormal basis |1〉,. . . ,|d〉 is usually referred to as
the standard computational basis. For an integer j ∈ {0, . . . , 2s − 1} let σ1 . . . σs be
a binary presentation of j. We use notation |j〉 to denote quantum state |σ1〉 · · · |σs〉 =
|σ1〉 ⊗ · · · ⊗ |σs〉.

We let Zq to be finite additive group of Z/qZ, the integers modulo q. Let Σk be
a set of words of length k over a finite alphabet Σ. Let X be a finite set. In the paper
we let X = Σk, or X = Zq . For K = |X| and integer s ≥ 1 we define a (K; s)
classical-quantum function (or just quantum function) to be a unitary transformation
(determined by an element w ∈ X) of the initial state |ψ0〉 ∈ (H2)⊗s to a quantum
state |ψ(w)〉 ∈ (H2)⊗s

ψ : {|ψ0〉} × X→ (H2)⊗s |ψ(w)〉 = U(w)|ψ0〉,
where U(w) is a unitary matrix. We let |ψ0〉 = |0〉 in the paper and use (for short) the
following notation (instead of the one above)

ψ : X→ (H2)⊗s or ψ : w 7→ |ψ(w)〉.

3 Quantum fingerprinting

The ideas of the fingerprinting technique in the quantum setting for the first time ap-
peared in (Ambainis and Freivalds, 1998). The authors used a succinct presentation
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of the classical input by a quantum automata state, which resulted in an exponential
improvement over classical algorithm. Later in (Ambainis and Nahimovs, 2008) the
ideas were developed further to give an arbitrarily small probability of error. This was
the basis for the general quantum fingerprinting framework proposed in (Ablayev and
Vasiliev, 2009).

However, the term “quantum fingerprinting” is mostly used in scientific literature
to address a seminal paper by Buhrman et al. (2001), where this notion first appeared
explicitly. To distinguish between different versions of the quantum fingerprinting tech-
niques, here we call the fingerprinting function from (Buhrman et al., 2001) “binary”
(since it uses some binary error-correcting code in its construction), while the finger-
printing from (Ablayev and Vasiliev, 2009) is called “q-ary” for it uses presentation of
the input in Zq .

3.1 Binary quantum fingerprinting function

The quantum fingerprinting function was formally defined in (Buhrman et al., 2001),
where it was used for quantum equality testing in a quantum communication model. It
is based on the notion of a binary error-correcting code.

An (n, k, d) error-correcting code is a mapC : Σk → Σn such that, for any two dis-
tinct words w,w′ ∈ Σk, the Hamming distance d(C(w), C(w′)) between code words
C(w) and C(w′) is at least d. The code is binary if Σ = {0, 1}.

The construction of the quantum fingerprinting function is as follows.

– Let c > 2 and ε < 1. Let k be a positive integer and n = ck. Let E : {0, 1}k →
{0, 1}n be an (n, k, d) binary error-correcting code with Hamming distance d ≥
(1− ε)n.

– Define a family of functions FE = {E1, . . . , En}, where Ei : {0, 1}k → F2 is
defined by the rule: Ei(w) is the i-th bit of the codeword E(w).

– Let s = log n + 1. Define the quantum function ψFE : {0, 1}k → (H2)⊗s, deter-
mined by a word w as

|ψFE (w)〉 =
1√
n

n∑
i=1

|i〉|Ei(w)〉.

Original paper (Buhrman et al., 2001) used this function to construct a quantum
communication protocol that tests equality in the simultaneous message passing (SMP)
model with no shared resources. This protocol requires O(log n) qubits to compare
n-bit binary strings which is exponentially smaller than any classical deterministic or
even randomized protocol in the SMP setting with no shared randomness. The proposed
quantum protocol has one-sided error of 1/2(1+〈ψFE (x) |ψFE (y)〉2), where |ψFE (x)〉,
|ψFE (y)〉 are two different quantum fingerprints. Their inner product
|〈ψFE (x) |ψFE (y)〉| is bounded by ε, if the Hamming distance of the underlying code is
(1− ε)n. For instance, Justesen codes mentioned in the paper give ε < 9/10 + 1/(15c)
for any chosen c > 2.
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In the same paper it was shown, that this result can be improved by choosing an
error-correcting code with Hamming distance between any two distinct codewords be-
tween (1− ε)n/2 and (1 + ε)n/2 for any ε > 0 (however, the existence of such codes
can only be proved nonconstructively via probabilistic argument).

But even with such code the quantum fingerprinting function above would give

|〈ψFE (x) |ψFE (y)〉| < (1 + ε)/2,

which resulted in the following change of construction (Buhrman et al., 2001).
Define the classical-quantum function ψ : {0, 1}k → (H2)⊗s, determined by a

word w as

ψ(w) =
1√
n

n∑
i=1

(−1)Ei(w)|i〉.

This function gives the following bound for the fingerprints of distinct inputs

|〈ψFE (x) |ψFE (y)〉| < ε.

The further research on this topic mostly used this version of quantum fingerprinting.

3.2 q-ary quantum fingerprinting

In this section we show the basic idea of the quantum fingerprinting from (Ablayev and
Vasiliev, 2009; Ablayev and Vasiliev, 2011b).

Let σ = σ1 . . . σn be an input string and g be the mapping of {0, 1}n onto Zq
that “encodes” some property of the input we’re about to test. We consider g to be the
polynomial over Zq such that g(σ) = 0 mod q iff σ has the property encoded by g. For
example, if we test the equality of two n-bit binary strings x1 . . . xn and y1 . . . yn, we
can choose g equal to the following polynomial over Z2n :

n∑
i=1

xi2
i−1 −

n∑
i=1

yi2
i−1.

To test the property encoded by g we rotate the initial state |0〉 of a single qubit by
an angle θ = πg(σ)/q:

|0〉 → cos θ|0〉+ sin θ|1〉.

Then this state is measured and the input σ is accepted iff the result of the measure-
ment is |0〉.

Obviously, this quantum state is ±|0〉 iff g(σ) = 0 mod q. In the worst case this
algorithm gives the one-sided error of cos2 π(q − 1)/q, which can be arbitrarily close
to 1.

The above description can be presented as follows using log t+ 1 = (log log q) + 1
qubits:

|0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
log t

⊗|0〉 −→ 1√
t

t∑
i=1

|i〉
(

cos θi|0〉+ sin θi|1〉
)
,
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where θi = 2πsig(σ)
q and the set S = {s1, . . . , st} ⊆ Zq is chosen in order to guar-

antee the small probability of error (Ablayev and Vasiliev, 2009; Ablayev and Vasiliev,
2011b). That is, the last qubit is simultaneously rotated in t different subspaces by cor-
responding angles.

Summarizing, quantum fingerprinting method may be applied in the following man-
ner:

1. The initial state of the quantum register is |0〉⊗ log t|0〉.
2. The Hadamard transform creates the equal superposition of the basis states

1√
t

t∑
j=1

|j〉|0〉

3. Based on the input σ it’s fingerprint is created:
1√
t

t∑
j=1

|j〉
(

cos
2πsjg(σ)

q |0〉+ sin
2πsjg(σ)

q |1〉
)

4. The Hadamard transform turns the fingerprint into the superposition(
1
t

t∑
l=1

cos 2πslg(σ)
q

)
|0〉⊗ log t|0〉+ . . .

5. The quantum register is measured and the input is accepted iff the result is
|0〉⊗ log t|0〉.

In (Ablayev and Vasiliev, 2009, 2011a, 2011b) we have applied this technique to
construct efficient quantum algorithms for a certain class of Boolean functions in the
model of read-once quantum branching programs (Ablayev et al., 2001).

4 Quantum hashing

In this section we present recent results on quantum hashing developed in our research
group.

4.1 One-way δ-resistance.

We present the following definition of a quantum δ-resistant one-way function. Let
“information extracting” mechanism M be a function M : (H2)⊗s → X. Informally
speaking, mechanism M makes some measurement to state |ψ〉 ∈ (H2)⊗s and decodes
the result of measurement to X.

Definition 1. Let X be a random variable distributed over X {Pr[X = w] : w ∈ X}.
Let ψ : X → (H2)⊗s be a quantum function. Let Y be any random variable over X
obtained by some mechanism M making measurement to the encoding ψ of X and
decoding the result of the measurement to X. Let δ > 0. We call a quantum function ψ
a one-way δ-resistant function if

1. if it is easy to compute, i.e., a quantum state |ψ(w)〉 for a particular w ∈ X can be
determined using a polynomial-time algorithm;

2. for any mechanism M, the probability Pr[Y = X] that M successfully decodes Y
is bounded by δ

Pr[Y = X] ≤ δ.
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For the cryptographic purposes it is natural to expect (and we do this in the rest of the
paper) that random variable X is uniformly distributed.

A quantum state of s ≥ 1 qubits can “carry” an infinite amount of information. On
the other hand, the fundamental result of quantum informatics known as the Holevo’s
Theorem (Holevo, 1973) states that a quantum measurement can only give O(s) bits of
information about the state. Here we use the result of (Nayak, 1999) motivated by the
Holevo’s Theorem.

Property 1. Let X be a random variable uniformly distributed over {0, 1}k. Let ψ :
{0, 1}k → (H2)⊗s be a (2k; s) quantum function. Let Y be a random variable over
{0, 1}k obtained by some mechanism M making some measurement of the encoding ψ
ofX and decoding the result of measurement to {0, 1}k. Then the probability of correct
decoding is given by

Pr[Y = X] ≤ 2s

2k
.

4.2 Collision ε-resistance

The following definition was presented in (Ablayev and Ablayev, 2015b).

Definition 2. Let ε > 0. We call a quantum function ψ : X → (H2)⊗s a collision
ε-resistant function if for any pair w,w′ of different inputs,

|〈ψ(w) |ψ(w′)〉| ≤ ε.

Testing equality. The crucial procedure for quantum hashing is an equality test for
|ψ(v)〉 and |ψ(w)〉 that can be used to compare encoded classical messages v and w;
see for example (Gottesman and Chuang, 2001). This procedure can be a well-known
SWAP-test (Buhrman, Cleve, Watrous, and Wolf, 2001) or something that is adapted
for specific hashing function, like REVERSE-test (Ablayev and Vasiliev, 2014).

4.3 Balanced quantum (δ, ε)-resistance.

The above two definitions and considerations lead to the following formalization of the
quantum cryptographic (one-way and collision resistant) function

Definition 3. Let K = |X| and s ≥ 1. Let δ > 0 and ε > 0. We call a function
ψ : X → (H2)⊗s a quantum (δ, ε)-Resistant (K; s)-hash function (or just quantum
(δ, ε)-hash function) iff ψ is one-way δ-resistant and is collision ε-resistant function.

We present below the following two examples to demonstrate how one-way δ-
resistance and collision ε-resistance are correlated. The first example was presented
in (Ambainis and Freivalds, 1998) in terms of quantum automata.

Example 1. Let us encode numbers v from {0, . . . , 2k−1} by a single qubit as follows:

ψ : v 7→ cos

(
2πv

2k

)
|0〉+ sin

(
2πv

2k

)
|1〉.
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Extracting information from |ψ〉 by measuring |ψ〉 with respect to the basis {|0〉, |1〉}
gives the following result. The function ψ is one-way 2

2k
-resistant (see Property 1) and

collision cos
(
π/2k−1

)
-resistant. Thus, the function ψ has good one-way property, but

has bad collision resistance property for large k.

Example 2. Let v = σ1 . . . σk ∈ {0, 1}k. We encode v by k qubits: ψ : v 7→ |v〉 =
|σ1〉 · · · |σk〉.

Extracting information from |ψ〉 by measuring |ψ〉 with respect to the basis {|0 . . . 0〉,
. . . , |1 . . . 1〉} gives the following result. The function ψ is one-way 1-resistant and
collision 0-resistant. So, in contrast to Example 1 the encoding ψ from Example 2 is
collision free, that is, for different words v and w quantum states |ψ(v)〉 and |ψ(v)〉 are
orthogonal and therefore reliably distinguished; but we lose the one-way property: ψ is
easily invertible.

The following result (Ablayev and Ablayev, 2015b) shows that a quantum collision
ε-resistant (K; s) function needs at least log logK − c(ε) qubits.

Property 2. Let s ≥ 1 andK = |X| ≥ 4. Let ψ : X→ (H2)⊗s be a collision ε-resistant
quantum hash function. Then

s ≥ log logK − log log
(

1 +
√

2/(1− ε)
)
− 1.

Proof. See (Ablayev and Ablayev, 2015b) for the proof. �

Properties 1 and 2 provide a basis for building a “balanced” one-way δ-resistance
and collision ε-resistance properties. That is, roughly speaking, if we need to hash ele-
ments w from the domain X with |X| = K and if one can build for an ε > 0 a collision
ε-resistant (K; s) hash function ψ with s ≈ log logK − c(ε) qubits then the function f
is one-way δ-resistant with δ ≈ (logK/K). Such a function is balanced with respect
to Property 2.

To summarize the above considerations we can state the following. A quantum
(δ, ε)-hash function is a function that satisfies all of the properties that a “classical”
hash function should satisfy. Pre-image resistance follows from Property 1. Second
pre-image resistance and collision resistance follow, because all inputs are mapped to
states that are nearly orthogonal. Therefore, we see that quantum hash functions can
satisfy the three properties of a classical cryptographic hash function.

4.4 Quantum (δ, ε)-Hash Functions Construction Via Small-Biased Sets.

This section is based on the paper (Vasiliev, 2016). We present here a brief background
on ε-biased sets as defined in (Chen, Moore, and Russell, 2013) and discuss their con-
nection to quantum hashing. Note that ε-biased sets are generally defined for arbitrary
finite groups, but here we restrict ourselves to Zq .

For an a ∈ Zq a character χa of Zq is a homomorphism χa : Zq → µq , where
µq is the (multiplicative) group of complex q-th roots of unity. That is, χa(x) = ωax,
where ω = e

2πi
q is a primitive q-th root of unity. The character χ0 ≡ 1 is called a trivial

character.
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Definition 4. A set S ⊆ Zq is called ε-biased, if for any nontrivial character χ ∈ {χa :
a ∈ Zq}

1

|S|

∣∣∣∣∣∑
x∈S

χ(x)

∣∣∣∣∣ ≤ ε.
These sets are interesting when |S| � |Zq| (as S = Zq is 0-biased). In their semi-

nal paper Naor and Naor (1990) defined these small-biased sets, gave the first explicit
constructions of such sets, and demonstrated the power of small-biased sets for several
applications.

Remark 1. Note that a set S of O(log q/ε2) elements selected uniformly at random
from Zq is ε-biased with positive probability (Alon and Roichman, 1994).

Many other constructions of small-biased sets followed during the last decades.
Vasiliev (2016) showed that ε-biased sets generate (δ,ε)-resistant hash functions. We

present the result of (Vasiliev, 2016) in the following form.

Property 3. Let S ⊆ Zq be an ε-biased set. Let

HS = {ha(x) = ax (mod q), a ∈ S, ha : Zq → Zq}

be a set of functions determined by S. Then a quantum functionψS : Zq → (H2)⊗ log |S|

|ψS(x)〉 =
1√
|S|

∑
a∈S

ωha(x)|a〉

is a (δ, ε)-resistant quantum hash function, where δ ≤ |S|/q.

Proof. One-way δ-resistance property of ψS follows from Property 1: a probability of
correct decoding an x from a quantum state |ψS(x)〉 is bounded by |S|/q. The effi-
cient computability of such a function follows from the fact that any quantum trans-
formation on s qubits (including the one that creates a quantum hash) can be per-
formed with O(s24s) elementary quantum gates (Nielsen and Chuang, 2000). When-
ever s = O(log |S|) = O(log log q− log ε), this number of steps is polynomial in log q
(the binary representation of group elements) and 1/ε.

Collision ε-resistance property of ψS follows directly from the corresponding prop-
erty of (Vasiliev, 2016). Note that

|ψS(x)〉 =
1√
|S|

∑
a∈S

ωha(x)|a〉 =
1√
|S|

∑
a∈S

χx(a)|a〉.

Further proof coincides with the proof of the paper (Vasiliev, 2016). �

Remark 2. It is natural to call the set HS of functions a uniform ε-biased quantum hash
generator in the context of the definition of quantum hash generator from (Ablayev and
Ablayev, 2015a) and the above considerations.
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As a corollary of the Property 3 and the above considerations we can state the following.

Property 4. For a small sized ε-biased set S = {s1, . . . , st} ⊂ Zq with t = O(log q/ε2),
for δ ≤ O( log q

ε2q ) a quantum hash generatorHS generates balanced (δ, ε)-resistant quan-
tum hash function ψS

|ψS(a)〉 =
1√
t

t∑
j=1

ωasj |j〉.

4.5 Quantum fingerprinting functions as hash functions

In this section we give two explicit examples of the quantum hashing for specific finite
abelian groups, which turn out to be the known quantum fingerprinting schemas.

Hashing the elements of the Boolean cube. For G = Zn2 its characters can be written
in the form χa(x) = (−1)(a,x), and the corresponding quantum hash function is the
following

|ψS(a)〉 =
1√
|S|

|S|∑
j=1

(−1)(a,sj)|j〉.

The resulting hash function is exactly the quantum fingerprinting by Buhrman et
al. (2001), once we consider an error-correcting code, whose matrix is built from the
elements of S. Indeed, as stated in (Ben-Aroya and Ta-Shma, 2009) an ε-balanced error-
correcting code can be constructed out of an ε-biased set. Thus, the inner product (a, x)
in the exponent is equivalent to the corresponding bit of the codeword, and altogether
this gives the quantum fingerprinting function, that stores information in the phase of
quantum states (de Wolf, 2001).

Hashing the elements of the cyclic group For G = Zq its characters can be written as
χa(x) = exp (2πiax/q), and the corresponding quantum hash function is given by

|ψS(a)〉 =
1√
|S|

|S|∑
j=1

ωasj |j〉.

The above quantum hash function is essentially equivalent to the one we have defined
earlier in (Ablayev and Vasiliev, 2014), which is in turn based on the quantum finger-
printing function from (Ablayev and Vasiliev, 2009).

4.6 Quantum hash functions via expander graphs

In this section we show further development of the quantum hashing for finite groups.
First, we explore the connection of the small-bias sets to the graph theory and then
construct corresponding quantum hash functions.

Let us recall some definitions from graph theory.
A graph Γ is a set V of vertices and a (multi-)set of edges E. Graph Γ is the d-

regular graph if all vertices have the same degree d; i.e. each vertex is incident to exactly
d edges.
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Adjacency matrix of the graph A = A(Γ) is an n × n matrix whose (u, v) entry
is the number of edges between vertex u and vertex v. We refer to the eigenvalues of
A(Γ) as the spectrum of the graph Γ.

Given a d-regular graph Γ with n vertices and spectrum λ1 ≥ λ2 ≥ . . . ≥ λn we
denote λ(Γ) = max{|λ2|, |λn|}.

We call the graph Γ a (d, λ)-expander graph if Γ is d-regular and has λ(Γ) = λ.
Next we consider the special case of expanders called Cayley graphs. They are

defined as follows.
The set of vertices is identified with group elements G. The set of edges is E =

{(g, gs) : s ∈ S}.
If set S is symmetric (i.e. for any element s ∈ S of set its inverse s−1 is also

contained in S), graph Γ(G,S) is undirected.
The following fact is true for any finite abelian group G and any symmetric set S.

Property 5. Let χ be a character of a group G. The vector b = {χ(g) : g ∈ G} is a
eigenvector of the matrix AS = A(Γ(G,S))/|S| and corresponding eigenvalue is

1

|S|
∑
s∈S

χ(s).

Proof. Let aij be elements of matrix AS . Denote elements of G by g1, g2, . . .. Then
j-th element of ASb is

∑
k

ajkχ(gk) =
1

|S|
∑
s∈S

χ(gjs) =

(
1

|S|
∑
s∈S

χ(s)

)
χ(gj).

Therefore, ASb =
(

1
|S|
∑
s∈S χ(s)

)
b.

�

The number of irreducible characters of a group G is equal to the number of conju-
gacy classes of G, therefore for any abelian group G the following property holds.

Property 6. The Cayley graph Γ(G,S) is an (|S|, ε)-expander graph if and only if for
all nontrivial characters χ

1

|S|

∣∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣∣ ≤ ε.
Here we note, that any ε-biased set S gives rise to an (|S|, ε)-expander graph which

is Cayley graph, and Ziatdinov (2016) showed that (d, ε)-expander graphs generate
quantum hash functions using the following construction.

Let Γ = (V,E) be a (d, ε)-expander graph. We label vertices V of graph Γ with
elements of group G.

Let us randomly choose one vertex and perform a random walk of length t >

O
(

log |G|
ε

)
starting from it. Denote vertices that occurred in this walk by sj . Then

the following theorem holds.
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Theorem 1. A quantum function ΨΓ,t : G→ (H2)log t defined as

|ΨΓ,t(g)〉 =
1√
t

t∑
k=1

χ(g ◦ sk)|k〉.

is a (δ, ε)-resistant quantum hash function with δ < t/|G|.

For the proof see (Ziatdinov, 2016).

4.7 Quantum hash functions via extractors

Every expander graph can be converted to a bipartite expander graph. Generalization of
these bipartite expander graphs is the notion of extractor graphs. The extractor graph is
a bipartite graph where size of components can be different. An extractor can also be
defined in terms of function that maps pair of the first component vertex and edge to the
second component vertex.

To define extractors we first recall the notions of statistical distance and min-entropy.

Definition 5. We say that two distributions F and G are ε-close, if for every event A,
|Pr[F ∈ A]− Pr[G ∈ A]| ≤ ε.

The support of a distribution X is Supp(X) = {x : Pr[X = x] > 0}.
The uniform distribution over {0, 1}m is denoted by Um and we say that X is ε-

close to uniform if it is ε-close to Um.
We denote that distribution F is ε-close to distribution G by F

ε
≈ G.

Definition 6. Let X be a distribution. The min-entropy of X is

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
.

Now we recall the definition of extractors.

Definition 7. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for
every distribution X over {0, 1}n with min-entropy H∞(X) ≥ k, E(X,Y ) is ε-close
to uniform (where Y is distributed like Ud and is independent of X).

The notion of extractor can be used to construct a quantum hash function in the
following way.

Let Ext : G × {0, 1}d → H be a (k; ε) extractor function. Let X be a distribution
with min-entropy H∞(X) ≥ k. Let t > log |H|+1

2ε2 ||χ||∞ and si ∈ G, i ∈ {1, . . . , t}
chosen according to distribution X be parameters. Denote S = {si, i ∈ {1, . . . , t}}.

Let ΨExt,t,S : G→ (H2)⊗(d+log t) be a quantum function defined as

|ΨExt,t,S(g)〉 =
1√
t2d

t∑
i=1

2d∑
j=1

χ(Ext(g ◦ si, j))|j〉|i〉.

The following theorem about ΨExt,t,S was proved in (Ziatdinov, 2016).

Theorem 2. ΨExt,t,S is a (δ, ε)-resistant quantum hash function, where δ ≤ 2dt/|G|.
Thus, using explicit extractors (like the one of (Guruswami, Umans, and Vadhan,

2009)) we can obtain an explicit quantum hash function with cryptographic properties.
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4.8 Message authentication codes via quantum hash functions

Classical message authentication codes (MAC) have a wide range of applications, for
more details we refer to (Menezes, Van Oorschot, and Vanstone, 1996). They are de-
fined as a triple of algorithms: G that generates a key, S that uses the key and the
message to generate a tag of the message, and V that uses the key, the message and
the tag to verify message integrity. This method uses shared secret key, and so parties
should trust each other.

Formally, G : 1n → K, where n is a security parameter and K is a set of all
possible keys, S : K×X → T , where X is a set of messages and T is a set of tags and
V : K ×X × T → {Acc,Rej}.

We require the following property for MAC to be a sound system:

∀n, ∀x ∈ X : k = G(1n), V
(
k, x, S(k, x)

)
= Acc,

i.e. that verifier always accepts a generated tag.
We also require that MAC is a secure system and for any adversaryA that can query

MAC:

∀n, k /∈ Query(A), (x, t)← A(S),Pr
[
V (k, x, t) = Acc

]
≤ 2−n,

i.e. any adversary that can query MAC outputs correct tag for some key that was not
queried and some message with negligible probability.

One classical construction of MAC is hash-based MAC (also known as keyed hash
functions). Basically, keyed hash function is a function H(k, x), such that H(k, ·) is a
cryptographic hash function for every k. It is easy to see that such function can be used
as MAC.

Strong extractors against quantum storage. Ta-Shma (2009) introduced the following
definitions.

Definition 8. An (n, b) quantum encoding is a collection {ρ(x)}x∈{0,1}n of density
matrices ρ(x) ∈ (H2)⊗b.

Definition 9. A boolean test T ε-distinguishes a distributionD1 from a distributionD2

if ∣∣∣∣ Pr
x1∈D1

[T (x1) = 1]− Pr
x2∈D2

[T (x2) = 1]

∣∣∣∣ ≥ ε.
We say D1 is ε-indistinguishable from D2 if no boolean POVM can ε-distinguish

D1 from D2.

Definition 10. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, b, ε) strong ex-
tractor against quantum storage, if for any distribution X ⊆ {0, 1}n with H∞(X) ≥ k
and every (n, b) quantum encoding {ρ(x)}, Ut ◦E(X,Ut)◦ρ(X) is ε-indistinguishable
from Ut+m ◦ ρ(X).
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Keyed quantum hash functions. Now we are ready to define keyed quantum hash func-
tions.

Definition 11. A (δ, ε) keyed quantum hash function is a quantum function S, such that

– A function S, given a key k ∈ K and a message x ∈ X , outputs a quantum tag for
x: S : K ×X → T = (H2)⊗t.

– S is sound, i.e. tags should be different for different messages under the same key.

∀k ∈ K,∀x ∈ X,∀y 6= x : |〈S(k, x) |S(k, y)〉| < ε.

For x = y we get 〈S(k, x) |S(k, x)〉 = 1.
– S is unforgeable:

∀k ∈ K, k /∈ Query(A), (x, t)← A(S),Pr
[
〈t |S(k, x)〉 ≥ ε)

]
≤ δ,

where A is arbitrary attacker that can query S and Query(A) is a set of queries
made.

Informally, keyed quantum hash function outputs a tag for a message. If someone
changes a message, then the verification step fails with high probability. If an attacker
Eve can query a keyed quantum hash function, access to the function doesn’t help her
to forge a tag for some message with some (unqueried) key.

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, b, ε) extractor against quantum
storage and b > r(d+ log t) .

Let ΨExt be the following quantum function.

|ΨExt(key, g)〉 =
1√
t2d

t∑
i=1

2d∑
j=1

χ(Ext(g ◦ key ◦ si, j))|j〉|i〉

Theorem 3. ΨExt is an (ε + ε2
s+1, ε) keyed quantum hash function secure against an

attacker A with access to r queries to ΨExt.

For the detailed proof we refer to (Ziatdinov, 2016). Here we note, that using ex-
plicit extractor against quantum storage from (De and Vidick, 2009) one can construct
a corresponding keyed quantum hash function.
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