Nothing Special   »   [go: up one dir, main page]

Skip to main content

Declarative Networking

  • Book
  • © 2012

Overview

Part of the book series: Synthesis Lectures on Data Management (SLDM)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, declarative networking serves as an important step towards an extensible, evolvable network architecture that can support flexible, secure and efficient deployment of new network protocols. This book provides an introduction to basic issues in declarative networking, including language design, optimization and dataflow execution. The methodology behind declarative programming of networks is presented,including roots in Datalog, extensions for networked environments, and the semantics of long-running queries over network state. The book focuses on a representative declarative networking language called Network Datalog (NDlog), which is based on extensions to the Datalog recursive query language. An overview of declarative network protocols written in NDlog is provided, and its usage is illustrated using examples from routing protocols and overlay networks. This book also describes the implementation of a declarative networking engine and NDlog execution strategies that provide eventual consistency semantics with significant flexibility in execution. Two representative declarative networking systems (P2 and its successor RapidNet) are presented. Finally, the book highlights recent advances in declarative networking, and new declarative approaches to related problems. Table of Contents: Introduction / Declarative Networking Language / Declarative Networking Overview / Distributed Recursive Query Processing / Declarative Routing / Declarative Overlays / Optimization of NDlog / Recent Advances in Declarative Networking / Conclusion

Table of contents (9 chapters)

Authors and Affiliations

  • University of Pennsylvania, USA

    Boon Thau Loo, Wenchao Zhou

About the authors

Boon Thau Loo is an Assistant Professor in the Computer and Information Science department at the University of Pennsylvania. He received his Ph.D. degree in Computer Science from the University of California at Berkeley in 2006. Prior to his Ph.D., he received his M.S. degree from Stanford University in 2000, and his B.S. degree with highest honors from UC Berkeley in 1999. His research focuses on distributed data management systems, Internet-scale query processing, and the application of data-centric techniques and formal methods to the design, analysis and implementation of networked systems. Wenchao Zhou is a Ph.D. student in the Computer and Information Science department at the University of Pennsylvania. He received his B.S. degree from Tsinghua University in 2006 and M.S. Degree from the University of Pennsylvania in 2009. His research interests are in distributed systems, focusing on logic-based declarative approach for verifiable secure distributed systems, and the application of data-centric techniques to secure forensics and diagnosis in potentially adversarial environments.

Bibliographic Information

Publish with us