Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials

  • Review Article
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Metronidazole, the prototype nitroimidazole antimicrobial, was originally introduced to treat Trichomonas vaginalis, but is now used for the treatment of anaerobic and protozoal infections. The nitroimidazoles are bactericidal through toxic metabolites which cause DNA strand breakage. Resistance, both clinical and microbiological, has been described only rarely.

Metronidazole given orally is absorbed almost completely, with bioavailability >90% for tablets; absorption is unaffected by infection. Rectal and intravaginal absorption are 67 to 82%, and 20 to 56%, of the dose, respectively.

Metronidazole is distributed widely and has low protein binding (<20%). The volume of distribution at steady state in adults is 0.51 to 1.1 L/kg. Metronidazole reaches 60 to 100% of plasma concentrations in most tissues studied, including the central nervous system, but does not reach high concentrations in placental tissue.

Metronidazole is extensively metabolised by the liver to 5 metabolites. The hydroxy metabolite has biological activity of 30 to 65% and a longer elimination half-life than the parent compound. The majority of metronidazole and its metabolites are excreted in urine and faeces, with less than 12% excreted unchanged in urine.

The pharmacokinetics of metronidazole are unaffected by acute or chronic renal failure, haemodialysis, continuous ambulatory peritoneal dialysis, age, pregnancy or enteric disease. Renal dysfunction reduces the elimination of metronidazole metabolites; however, no toxicity has been documented and dosage alterations are unnecessary. Liver disease leads to a decreased clearance of metronidazole and dosage reduction is recommended.

Recent pharmacodynamic studies of metronidazole have demonstrated activity for 12 to 24 hours after administration of metronidazole 1g. The post-antibiotic effect of metronidazole extends beyond 3 hours after the concentration falls below the minimum inhibitory concentration (MIC). The concentration-dependent bactericidal activity, prolonged half-life and sustained activity in plasma support the clinical evaluation of higher doses of metronidazole given less frequently.

Metronidazole-containing regimens for Helicobacter pylori in combination with proton pump inhibitors demonstrate higher success rates than antimicrobial regimens alone. The pharmacokinetics of metronidazole in gastric fluid appear contradictory to these results, since omeprazole reduces peak drug concentration and area under the concentration-time curve for metronidazole and its hydroxy metabolite; however, concentrations remain above the MIC.

Other members of this class include tinidazole, ornidazole and secnidazole. They are also well absorbed and distributed after oral administration. Their only distinguishing features are prolonged half-lives compared with metronidazole. The choice of nitroimidazole may be influenced by the longer administration intervals possible with other members of this class; however, metronidazole remains the predominant antimicrobial for anaerobic and protozoal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speck WT, Stein AB, Rosenkranz HS. Metronidazole bioassay. Antimicrob Agents Chemother. 1976; 9: 260–1.

    Article  PubMed  CAS  Google Scholar 

  2. Durel P, Couture J, Bassoullet MT. The rapid detection of metronidazole in urine. Br J Vener Dis. 1967; 43: 111–3.

    PubMed  CAS  Google Scholar 

  3. Nilsson-Ehle I, Ursing B, Nilsson-Ehle P. Liquid chromatographic assay for metronidazole and Imidazole: pharmacokinetic and metabolic studies in human subjects. Antimicrob Agents Chemother. 1981; 19: 754–60.

    Article  PubMed  CAS  Google Scholar 

  4. Wheeler LA, DeMeo M, Halula M. et al. Use of high-pressure liquid chromatography to determine plasma levels of metronidazole and metabolites after intravenous administration. Antimicrob Agents Chemother. 1978; 13: 205–9.

    Article  PubMed  CAS  Google Scholar 

  5. Müller M. Mode of action of metronidazole on anaerobic bacteria and protozoa. Surgery. 1983; 93: 165–71.

    PubMed  Google Scholar 

  6. Edwards DI. Mechanism of antimicrobial action of metronidazole. J Antimicrob Chemother. 1979; 5: 499–502.

    Article  PubMed  CAS  Google Scholar 

  7. Chrystal EJT, Koch RL, McLafferty MA, et al. Relationship between metronidazole metabolism and bactericidal activity. Antimicrob Agents Chemother. 1980; 18: 566–73.

    Article  PubMed  CAS  Google Scholar 

  8. Britz ML, Wilkinson RG. Isolation and properties of metronidazole-resistant mutants of Bacteroides fragilis. Antimicrob Agents Chemother. 1979; 16: 19–27.

    Article  PubMed  CAS  Google Scholar 

  9. Bergan T, Arnold E. Pharmacokinetics of metronidazole in healthy volunteers after tablets and suppositories. Chemotherapy. 1980; 26: 231–41.

    Article  PubMed  CAS  Google Scholar 

  10. Ralph ED, Clarke JT, Libke RD, et al. Pharmacokinetics of metronidazole as determined by bioassay. Antimicrob Agents Chemother. 1974; 6: 691–6.

    Article  PubMed  CAS  Google Scholar 

  11. Jensen JC, Gugler R. Single and multiple-dose metronidazole kinetics. Clin Pharmacol Ther. 1983; 34: 481–7.

    Article  PubMed  CAS  Google Scholar 

  12. Houghton GW, Smith J, Thorne PS, et al. The pharmacokinetics of oral and intravenous metronidazole in man. J Antimicrob Chemother. 1979; 5: 621–3.

    Article  PubMed  CAS  Google Scholar 

  13. Houghton GW, Hundt HKL, Muller FO, et al. A comparison of the pharmacokinetics of metronidazole in man after oral administration of single doses of benzoylmetronidazole and metronidazole. Br J Clin Pharmacol. 1982; 14: 201–6.

    Article  PubMed  CAS  Google Scholar 

  14. Fredricsson B, Hagström B, Nord CE, et al. Systemic concentrations of metronidazole and its main metabolites after intravenous oral and vaginal administration. Gynecol Obstet Invest. 1987; 24: 200–7.

    Article  PubMed  CAS  Google Scholar 

  15. Loft S, Døssing M, Poulsen, HE, et al. Influence of dose and route of administration on disposition of metronidazole and its major metabolites. Eur J Clin Pharmacol. 1986; 30: 467–73.

    Article  PubMed  CAS  Google Scholar 

  16. Houghton GW, Thorne PS, Smith J, et al. Comparison of pharmacokinetics of metronidazole in healthy female volunteers following either a single oral or intravenous dose. Br J Clin Pharmacol. 1979; 8: 337–41.

    Article  PubMed  CAS  Google Scholar 

  17. Mattila J, Männistö PT, Mäntylä R, et al. Comparative pharmacokinetics of metronidazole and tinidazole as influenced by administration route. Antimicrob Agents Chemother. 1983; 23: 721–5.

    Article  PubMed  CAS  Google Scholar 

  18. Cunningham FE, Kraus DM, Brubaker L, et al. Pharmacokinetics of intravaginal metronidazole gel. J Clin Pharmacol. 1994; 34: 1060–5.

    PubMed  CAS  Google Scholar 

  19. Alper MM, Barwin N, McLean WM, et al. Systemic absorption of metronidazole by the vaginal route. Obstet Gynecol. 1985; 65: 781–4.

    PubMed  CAS  Google Scholar 

  20. Daneshmend TK, Homeida M, Kaye CM, et al. Disposition of oral metronidazole in hepatic cirrhosis and in hepatosplenic schistosomiasis. Gut. 1982; 23: 807–13.

    Article  PubMed  CAS  Google Scholar 

  21. Schwartz DE, Jeunet F. Comparative pharmacokinetic studies of ornidazole and metronidazole in man. Chemotherapy. 1976; 22: 19–29.

    Article  PubMed  CAS  Google Scholar 

  22. Bergan T, Leinebø O, Blom-Hagen T, et al. Pharmacokinetics and bioavailability of metronidazole after tablets, suppositories and intravenous administration. Scand J Gastroenterol. 1984; 19 Suppl. 91: 45–60.

    CAS  Google Scholar 

  23. Anion I, Anion K, Hüller H. Pharmacokinetics and therapeutic efficacy of metronidazole at different dosages. Int J Clin Pharmacol. 1978; 16: 384–6.

    Google Scholar 

  24. Lau AH, Emmons K, Seligsohn R. Pharmacokinetics of intravenous metronidazole at different dosages in healthy subjects. Int J Clin Pharmacol Ther Toxicol. 1991; 29: 386–90.

    PubMed  CAS  Google Scholar 

  25. Søreide O, Leinebø O, Bergan T, et al. Comparative pharmacokinetics of metronidazole and tinidazole used as single dose prophylactic agents. Scand J Gastroenterol 1984; Suppl 90: 97–106.

    Google Scholar 

  26. Solhaug JH, Bergan T, Leinebø, et al. The pharmacokinetics of one single perioperative dose of metronidazole or tinidazole. Scand J Gastroenterol 1984; Suppl. 90: 89–96.

    CAS  Google Scholar 

  27. Eradiri O, Jamali F, Thomson ABR. Steady-state pharmacokinetics of metronidazole in Crohn’s disease. Biopharm Drug Dispos. 1987; 8: 249–59.

    Article  PubMed  CAS  Google Scholar 

  28. Mattie H, Dijkmans AC, van Gulpen C. The pharmacokinetics of metronidazole and tinidazole in patients with mixed aerobic-anaerobic infections. J Antimicrob Chemother 1982; 10 Suppl. A: 59–64.

    PubMed  CAS  Google Scholar 

  29. Wood BA, Monro AM. Pharmacokinetics of tinidazole and metronidazole in women after single large oral doses. Br J Vener Dis. 1975; 51: 51–3.

    PubMed  CAS  Google Scholar 

  30. Anion I, Anion K, Franke G, et al. Pharmacokinetics of metronidazole in pregnant women. Chemotherapy. 1981; 27: 73–9.

    Article  Google Scholar 

  31. Anon. An evaluation of metronidazole in the prophylaxis and treatment of anaerobic infections in surgical patients. J Antimicrob Chemother. 1975; 1: 393–401.

    Article  Google Scholar 

  32. Houghton GW, Thorne PS, Smith J, et al. Plasma metronidazole concentrations after suppository administration. In: Phillips R, Collier J, eds. Metronidazole: proceedings of the second international symposium on anaerobic infections. Geneva, 1979 April. Royal Society of Medicine, London/Grune and Stratton, New York. New York: Academic Press, 1979: 41–4.

    Google Scholar 

  33. Aronson IK, Rumsfield JA, West DP, et al. Evaluation of topical metronidazole gel in acne rosacea. Drug Intell Clin Pharm. 1987; 21: 346–51.

    PubMed  CAS  Google Scholar 

  34. Schmadel LK, McEvoy GK. Topical metronidazole: a new therapy for rosacea. Clin Pharm. 1990; 9: 94–101.

    PubMed  CAS  Google Scholar 

  35. Warner JF, Perkins RL, Cordero L. Metronidazole therapy of anaerobic bacteremia, meningitis, and brain abscess. Arch Intern Med. 1979; 139: 167–9.

    Article  PubMed  CAS  Google Scholar 

  36. O’Grady LR, Ralph ED. Anaerobic meningitis and bacteremia caused by Fusobacterium species. Am J Dis Child. 1976; 130: 871–3.

    PubMed  Google Scholar 

  37. Davies AH. Metronidazole in human infections with syphilis. Br J Vener Dis. 1967; 43: 197–200.

    PubMed  CAS  Google Scholar 

  38. Visser AA, Hundt HKL. The pharmacokinetics of a single intravenous dose of metronidazole in pregnant patients. J Antimicrob Chemother. 1984; 13: 279–83.

    Article  PubMed  CAS  Google Scholar 

  39. Templeton R. Metabolism and pharmacokinetics of metronidazole: a review. In: Finegold SM, McFadzean JA, Roe RJ, editors. Proceedings of the International Metronidazole Conference; 1976 May; Montreal, Quebec, Canada. Amsterdam: Excerpta Medica, 1977: 28–48.

    Google Scholar 

  40. Elder MG, Kane JL. The pelvic tissue levels achieved by metronidazole after single or multiple dosing: oral and rectal. In: Phillips R, Collier J, editors. Metronidazole: proceedings of the second international symposium on anaerobic infections. 1979 Apr; Geneva. Royal Society of Medicine, London. New York: Academic Press, 1979: 55–8.

    Google Scholar 

  41. Berger SA, Kupferminc M, Lessing JB, et al. Penetration of clindamycin, cefoxitin, and metronidazole into pelvic peritoneal fluid of women undergoing diagnostic laparoscopy. Antimicrob Agents Chemother. 1990; 34: 376–7.

    Article  PubMed  CAS  Google Scholar 

  42. Büchler M, Malfertheiner P, Friess H, et al. The penetration of antibiotics into human pancreas. Infection. 1989; 17: 26–31.

    Article  Google Scholar 

  43. Bassi C, Pederzoli P, Vesentini S, et al. Behavior of antibiotics during human necrotizing pancreatitis. Antimicrob Agents Chemother. 1994; 38: 830–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kling PA, Burman LG. Serum and tissue pharmacokinetics of intravenous metronidazole in surgical patients. Acta Chir Scand. 1989; 155: 347–50.

    PubMed  CAS  Google Scholar 

  45. Martin C, Sastre B, Mallet MN, et al. Pharmacokinetics and tissue penetration of a single 1,000-milligram, intravenous dose of metronidazole for antibiotic prophylaxis of colorectal surgery. Antimicrob Agents Chemother. 1991; 35: 2602–5.

    Article  PubMed  CAS  Google Scholar 

  46. Rood JP, Collier J. Metronidazole levels in alveolar bone. In: Phillips R, Collier J, eds. Metronidazole: proceedings of the second international symposium on anaerobic infections. Geneva, 1979 April. Royal Society of Medicine, London/Grune and Stratton, New York. New York: Academic Press, 1979: 45–7.

    Google Scholar 

  47. Taylor Jr JA, Migliardi JR, Schach von Wittenau M. Tinidazole and metronidazole pharmacokinetics in man and mouse. Antimicrob Agents Chemother 1969: 267–70.

  48. Jager-Roman E, Doyle PE, Baird-Lambert J, et al. Pharmacokinetics and tissue distribution of metronidazole in the newborn infant. J Pediatr. 1982; 100: 651–4.

    Article  PubMed  CAS  Google Scholar 

  49. Lau AH, Lam NP, Piscitelli SC. Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives. Clin Pharmacokinet. 1992; 23: 328–64.

    Article  PubMed  CAS  Google Scholar 

  50. Anion I, Anion K, Scharp H, et al. Disposition kinetics of metronidazole in children. Eur J Clin Pharmacol. 1983; 24: 113–9.

    Article  Google Scholar 

  51. Ti TY, Lee HS, Khoo YM. Disposition of intravenous metronidazole in Asian surgical patients. Antimicrob Agents Chemother. 1996; 40: 2248–51.

    PubMed  CAS  Google Scholar 

  52. Hand WL, King-Thompson N, Holman JW. Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1987; 31: 1553–7.

    Article  PubMed  CAS  Google Scholar 

  53. Soriano F, Aguado JM, Tornero J, et al. Bacteroides fragilis meningitis successfully treated with metronidazole after a previous failure with thiamphenicol. J Clin Microbiol. 1986; 24: 472–3.

    PubMed  CAS  Google Scholar 

  54. Feldman WE. Bacteroides fragilis ventriculitis and meningitis. Am J Dis Child. 1976; 84: 50–1.

    Google Scholar 

  55. George RH, Bint AJ. Treatment of a brain abscess due to Bacteroides fragilis with metronidazole. J Antimicrob Chemother. 1976; 2: 101–2.

    Article  PubMed  CAS  Google Scholar 

  56. Ingham HR, Selkon JB, Roxby CM. Bacteriological study of otogenic cerebral abscesses: chemotherapeutic role of metronidazole. BMJ. 1977; 2: 991–3.

    Article  PubMed  CAS  Google Scholar 

  57. Bergan T, Solhaug JH, Søreide O, et al. Comparative pharmacokinetics of metronidazole and tinidazole and their tissue penetration. Scand J Gastroenterol. 1985; 20: 945–50.

    Article  PubMed  CAS  Google Scholar 

  58. Van Oosten MAC, Notten FJW, Mikx FHM. Metronidazole concentrations in human plasma, saliva, and gingival crevice fluid after a single dose. J Dent Res. 1986; 65: 1420–3.

    Article  PubMed  Google Scholar 

  59. O’Keefe JP, Troc KA, Thompson KA. Activity of metronidazole and its hydroxy and acid metabolites against clinical isolates of anaerobic bacteria. Antimicrob Agents Chemother. 1982; 22: 426–30.

    Article  PubMed  Google Scholar 

  60. Pavicic MJAMP, van Winkelhoff AJ, de Graaff J. Synergistic effects between amoxicillin, metronidazole, and the hydroxy-metabolite of metronidazole against Actinobacillus actinomycetemcomitans. Antimicrob Agents Chemother. 1991; 35: 961–6.

    Article  PubMed  CAS  Google Scholar 

  61. Andersson KE. Pharmacokinetics of nitroimidazoles: spectrum of adverse reactions. Scand J Infect Dis 1981; Suppl. 26: 60–7.

    CAS  Google Scholar 

  62. Ralph ED, Kirby WMM. Bioassay of metronidazole with either anaerobic or aerobic incubation. J Infect Dis. 1975; 132: 587–91.

    Article  PubMed  CAS  Google Scholar 

  63. Ralph ED. Clinical pharmacokinetics of metronidazole. Clin Pharmacokinet. 1983; 8: 43–62.

    Article  PubMed  CAS  Google Scholar 

  64. Loft S, Poulsen HE, Sonne J, Døssing M. Metronidazole clearance: a one-sample method and influencing factors. Clin Pharmacol Ther. 1988; 43: 420–8.

    Article  PubMed  CAS  Google Scholar 

  65. Thiercelin JF, Diquet B, Levesque C, et al. Metronidazole kinetics and bioavailability in patients undergoing gastrointestinal surgery. Clin Pharmacol Ther. 1984; 35: 510–9.

    Article  PubMed  CAS  Google Scholar 

  66. Bergan T, Aase, Leinbo O, et al. Pharmacokinetics of metronidazole and its major metabolite after a high intravenous dose. Scand J Gastroenterol. 1984; 19 Suppl. 91: 113–23.

    CAS  Google Scholar 

  67. Somogyi AA, Kong CB, Gurr FW, et al. Metronidazole pharmacokinetics in patients with acute renal failure. J Antimicrob Chemother. 1984; 13: 183–9.

    Article  PubMed  CAS  Google Scholar 

  68. Houghton GW, Dennis MJ, Gabriel R. Pharmacokinetics of metronidazole in patients with varying degrees of renal failure. Br J Clin Pharm. 1985; 19: 203–9.

    Article  CAS  Google Scholar 

  69. Bergan T, Thorsteinsson SB. Pharmacokinetics of metronidazole and its metabolites in reduced renal function. Chemotherapy. 1986; 32: 305–18.

    Article  PubMed  CAS  Google Scholar 

  70. Kreeft JH, Ogilvie RI, Dufresne LR. Metronidazole kinetics in dialysis patients. Surgery. 1983; 93: 149–53.

    PubMed  CAS  Google Scholar 

  71. Lau AH, Chang CW, Sabatini S. Hemodialysis clearance of metronidazole and its metabolites. Antimicrob Agents Chemother. 1986; 29: 235–8.

    Article  PubMed  CAS  Google Scholar 

  72. Cassey JG, Clark DA, Merrick P, et al. Pharmacokinetics of metronidazole in patients undergoing peritoneal dialysis. Antimicrob Agents Chemother. 1983; 24: 950–1.

    Article  PubMed  CAS  Google Scholar 

  73. Guay DR, Meatherall RC, Baxter H, et al. Pharmacokinetics of metronidazole in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother. 1984; 25: 306–10.

    Article  PubMed  CAS  Google Scholar 

  74. Loft S, Sonne J, Døssing M, et al. Metronidazole pharmacokinetics in patients with hepatic encephalopathy. Scand J Gastroenterol. 1987; 22: 117–23.

    Article  PubMed  CAS  Google Scholar 

  75. Lau AH, Evans R, Chang C-W, et al. Pharmacokinetics of metronidazole in patients with alcoholic liver disease. Antimicrob Agents Chemother. 1987; 31: 1662–4.

    Article  PubMed  CAS  Google Scholar 

  76. Muscará MN, Pedrazzoli Jr J, Miranda EL, et al. Plasma hydroxy-metronidazole/ metronidazole ratio in patients with liver disease and in healthy volunteers. Br J Clin Pharmacol. 1995; 40: 477–80.

    Article  PubMed  Google Scholar 

  77. Lares-Asseff I, Cravioto J, Santiago P, et al. Pharmacokinetics of metronidazole in severely malnourished and nutritionally rehabilitated children. Clin Pharmacol Ther. 1992; 51: 42–50.

    Article  PubMed  CAS  Google Scholar 

  78. Shaffer JL, Kershaw A, Houston JB. Disposition of metronidazole and its effects on sulphasalazine metabolism in patients with inflammatory bowel disease. Br J Clin Pharmacol. 1986; 21: 431–5.

    Article  PubMed  CAS  Google Scholar 

  79. Bergan T, Bjerke Per EM, Fausa O. Pharmacokinetics of metronidazole in patients with enteric disease compared to normal volunteers. Chemotherapy. 1981; 27: 233–8.

    Article  PubMed  CAS  Google Scholar 

  80. Plaisance KI, Quintiliani R, Nightingale CH. The pharmacokinetics of metronidazole and its metabolites in critically ill patients. J Antimicrob Chemother. 1998; 21: 195–200.

    Article  Google Scholar 

  81. Selkon JB. The need for and choice of chemotherapy for anaerobic infections. Scand J Infect Dis 1981; 26 Suppl.: 19–23.

    CAS  Google Scholar 

  82. Spangler SK, Jacobs MR, Appelbaum PC. Time-kill study of the activity of trovafloxacin compared with ciprofloxacin, Sparfloxacin, metronidazole, cefoxitin, piperacillin, and piperacillin/tazobactam against six anaerobes. J Antimicrob Chemother 1997; 39 Suppl. B: 23–7.

    Article  PubMed  CAS  Google Scholar 

  83. Werk R, Schneider L. Ciprofloxacin in combination with metronidazole. Infection. 1988; 16: 257–60.

    Article  PubMed  CAS  Google Scholar 

  84. Bartlett JG, Louie TJ, Gorbach SL, et al. Therapeutic efficacy of 29 antimicrobial regimens in experimental intraabdominal sepsis. Rev Infect Dis. 1981; 3: 535–42.

    Article  PubMed  CAS  Google Scholar 

  85. Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis. 1991; 74 Suppl. 74: 63–70.

    Google Scholar 

  86. Nix DE, Tyrrell R, Müller M. Pharmacodynamics of metronidazole determined by a time-kill assay for Trichomonas vaginalis. Antimicrob Agents Chemother. 1995; 39: 1848–52.

    Article  PubMed  CAS  Google Scholar 

  87. Estes L. Review of pharmacokinetics and pharmacodynamics of antimicrobial agents. Mayo Clin Proc. 1998; 73: 1114–22.

    Article  PubMed  CAS  Google Scholar 

  88. Van der Auwera P, Van Laethem Y, Defresne N, et al. Comparative serum bactericidal activity against test anaerobes in volunteers receiving imipenem, clindamycin, latamoxef, and metronidazole. J Antimicrob Chemother. 1987; 19: 205–10.

    Article  PubMed  Google Scholar 

  89. Deppennan KM, Boeckh M, Grineisen S, et al. Brief report: combination effects of ciprofloxacin, clindamycin, and metronidazole intravenously in volunteers. Am J Med 1989; 87 Suppl. 5A: 46S–8S.

    Article  Google Scholar 

  90. Boeckh M, Lode H, Deppermann KM, et al. Pharmacokinetics and serum bactericidal activities of quinolones in combination with clindamycin, metronidazole, and ornidazole. Antimicrob Agents Chemother. 1990; 34: 2407–14.

    Article  PubMed  CAS  Google Scholar 

  91. Pefanis A, Thauvin-Elipoulos C, Holden J, et al. Activity of fleroxacin alone and in combination with clindamycin or metronidazole in experimental intra-abdominal abscesses. Antimicrob Agents Chemother. 1994; 38: 252–5.

    Article  PubMed  CAS  Google Scholar 

  92. Kowalsky SF, Echols RM, McConnick EM. Comparative serum bactericidal activity of ceftizoxime/metronidazole, ceftizoxime, clindamycin, and imipenem against obligate anaerobic bacteria. J Antimicrob Chemother. 1990; 25: 767–75.

    Article  PubMed  CAS  Google Scholar 

  93. Freeman CD, Nightingale CH, Nicolau DP, et al. Bactericidal activity of low-dose ceftizoxime plus metronidazole compared with cefoxitin and ampicillin-sulbactam. Pharmacotherapy. 1994; 14: 185–90.

    PubMed  CAS  Google Scholar 

  94. Freeman CD, Nightingale CH, Nicolau DP, et al. Serum bactericidal activity of ceftriaxone plus metronidazole against common intra-abdominal pathogens. Am J Hosp Pharm. 1994; 51: 1782–7.

    PubMed  CAS  Google Scholar 

  95. Goddard AF, Jessa MJ, Barrett DA, et al. Effect of omeprazole on the distribution of metronidazole, amoxicillin, and clarithromycin in human gastric juice. Gastroenterol. 1996; 111: 358–67.

    Article  CAS  Google Scholar 

  96. Jessa MJ, Goddard AF, Barrett DA, et al. The effect of omeprazole on the pharmacokinetics of metronidazole and hydroxymetronidazole in human plasma, saliva and gastric juice. Br J Clin Pharm. 1997; 44: 245–53.

    Article  CAS  Google Scholar 

  97. Goldman P. The development of 5-nitroimidazoles for the treatment and prophylaxis of anaerobic bacterial infections. J Antimicrob Chemother. 1982; 10: 23–42.

    PubMed  CAS  Google Scholar 

  98. Charuel C, Nachbaur J, Monro AM, et al. The pharmacokinetics of intravenous tinidazole in man. J Antimicrob Chemother. 1981; 8: 343–4.

    Article  PubMed  CAS  Google Scholar 

  99. Robson RA. Bailey RR, Sharman JR. Tinidazole pharmacokinetics in severe renal failure. Clin Pharmacokinet. 1984; 9: 88–94.

    Article  PubMed  CAS  Google Scholar 

  100. Evaldson GR, Lindgren S, Nord CE, et al. Tinidazole milk excretion and pharmacokinetics in lactating women. Br J Clin Pharmacol. 1985; 19: 503–7.

    Article  PubMed  CAS  Google Scholar 

  101. Wood SG, John BA, Chasseaud LF, et al. Pharmacokinetics and metabolism of 14C-tinidazole in humans. J Antimicrob Chemother. 1986; 17: 801–9.

    Article  PubMed  CAS  Google Scholar 

  102. Vinge E, Anderson KE, Ando G, et al. Biological availability and pharmacokinetics of tinidazole after single and multiple dose. Scand J Infect Dis. 1983; 15(4): 391–7.

    PubMed  CAS  Google Scholar 

  103. Klimowicz A, Nowak A, Bielecka-Grzela S. Penetration of tinidazole into blister fluid following its oral administration. Eur J Clin Pharmacol. 1992; 43: 523–6.

    Article  PubMed  CAS  Google Scholar 

  104. Wood BA, Faulkner JK, Munro AM. The pharmacokinetics, metabolism, and tissue distribution of tinidazole. J Antimicrob Chemother 1982; 10(A); 43–57.

    Google Scholar 

  105. Vittanen J, Auvinen O, Tunturi T. Serum and tissue tinidazole concentrations after intravenous infusion. Chemother. 1983; 29: 13–7.

    Article  Google Scholar 

  106. Karhunen M. Placental transfer of metronidazole and tinidazole in early human pregnancy after a single infusion. Br J Clin Pharmacol. 1984; 18: 254–7.

    Article  PubMed  CAS  Google Scholar 

  107. Carmine AA, Brogden RN, Heel RC, et al. Tinidazole in anaerobic infections. A review of its antibacterial activity, pharmacological properties and therapeutic efficacy. Drugs. 1982; 24: 85–117.

    Article  PubMed  CAS  Google Scholar 

  108. Jokipii AMM, Myllyla W, Hokkanen E, et al. Penetration of the blood brain barrier by metronidazole and tinidazole. J Antimicrob Chemother. 1977; 3: 239–45.

    Article  PubMed  CAS  Google Scholar 

  109. Packard RS. Tinidazole: a review of clinical experience in anaerobic infections. J Antimicrob Chemother 1982; 10(A); 65–72.

    Google Scholar 

  110. Jokipii L, Jokipii AMM. Treatment of giardiasis: comparative evaluation of ornidazole and tinidazole as a single dose. Gastroenterology. 1982; 83: 399–404.

    PubMed  CAS  Google Scholar 

  111. Martin C, Bruguerolle B, Mallet MN, et al. Pharmacokinetics and tissue penetration of a single dose of ornidazole (1,000 milligrams intravenously) for antibiotic prophylaxis in colorectal surgery. Antimicrob Agents Chemother. 1990; 34: 1921–4.

    Article  PubMed  CAS  Google Scholar 

  112. Rossignol JF, Maisonneuve H, Cho YW. Nitroimidazoles in the treatment of trichomoniasis, giardiasis, and amebiasis. Int J Clin Pharmacol Ther Toxicol. 1984; 22: 63–72.

    PubMed  CAS  Google Scholar 

  113. Heizmann P, Geschke R, Zinapold K. Determination of ornidazole and its main metabolites in biological fluids. J Chromatography. 1990; 534: 233–40.

    Article  CAS  Google Scholar 

  114. Matheson I, Johannessen KH, Bjorkvoll B. Plasma levels after a single oral dose of 1.5 g ornidazole. Br J Vener Dis. 1977; 53: 236–9.

    PubMed  CAS  Google Scholar 

  115. Taburet AM, Delion F, Attali P, et al. Pharmacokinetics of ornidazole in patients with severe liver cirrhosis. Clin Pharmacol Ther. 1986; 40: 359–64.

    Article  PubMed  CAS  Google Scholar 

  116. Turcant A, Granry JC, Allain P, et al. Pharmacokinetics of ornidazole in neonates and infants after a single intravenous infusion. Eur J Clin Pharmacol. 1987; 32: 111–3.

    Article  PubMed  CAS  Google Scholar 

  117. Horber FF, Maurer O, Probst PJ, et al. High haemodialysis clearance of ornidazole in the presence of a negligible renal clearance. Eur J Clin Pharmacol. 1989; 36: 389–93.

    Article  PubMed  CAS  Google Scholar 

  118. Merdjan H, Baumelou A, Diquet B, et al. Pharmacokinetics of ornidazole in patients with renal insufficiency; influence of haemodialysis and peritoneal dialysis. Br J Clin Pharmacol. 1985; 19: 211–7.

    Article  PubMed  CAS  Google Scholar 

  119. Taburet AM, Attali P, Bourget P, et al. Pharmacokinetics of ornidazole in patients with acute viral hepatitis, alcoholic cirrhosis, and extrahepatic cholestasis. Clin Pharmacol Ther. 1989; 45: 373–9.

    Article  PubMed  CAS  Google Scholar 

  120. Steib A, Jacoberger B, Von Bandel M et al. Concentrations in plasma and tissue penetration of ceftriaxone and ornidazole during liver transplantation. Antimicrob Agents Chemother. 1993; 37: 1873–6.

    Article  PubMed  CAS  Google Scholar 

  121. Bourget P, Dechelette N, Fernandez H, et al. Disposition of ornidazole and its metabolites during pregnancy. J Antimicrob Chemother. 1995; 35: 691–6.

    Article  PubMed  CAS  Google Scholar 

  122. Jokipii AMM, Jokipii L. Metronidazole, tinidazole, ornidazole and anaerobic infections of the middle ear, maxillary sinus and central nervous system. Scand J Infect Dis 1981; Suppl. 26: 123–9.

    CAS  Google Scholar 

  123. Schwartz DE, Jordan JC, Vetter W, et al. Metabolic studies of ornidazole in the rat, in the dog and in man. Xenobiotica. 1979; 9: 571–81.

    Article  PubMed  CAS  Google Scholar 

  124. Jokipii L, Jokipii AMM. Comparative evaluation of the 2-methyl-5-nitroimidazole compounds dimetridazole, metronidazole, secnidazole, ornidazole, carnidazole, and panidazole against Bacteroides fragilis and other bacteria of the Bacteroides fragilis group. Antimicrob Agents Chemother. 1985; 28: 561–4.

    Article  PubMed  CAS  Google Scholar 

  125. Olsson-Liljequist B, Nord CE. In vitro susceptibility of anaerobic bacteria to nitroimidazoles. Scand J Infect Dis 1981; Suppl 26: 42–5.

    CAS  Google Scholar 

  126. Cedillo-Rivera R, Munoz O. In vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents. J Med Microbiol. 1992; 37: 221–4.

    Article  PubMed  CAS  Google Scholar 

  127. Wust J. Susceptibility of anaerobic bacteria to metronidazole, ornidazole, and tinidazole and routine susceptibility testing by standardized methods. Antimicrob Agents Chemother. 1977; 11: 631–7.

    Article  PubMed  CAS  Google Scholar 

  128. Gillis JC, Wiseman LR. Secnidazole; a review of its antimicrobial activity, pharmacokinetic properties and therapeutic use in the management of protozoal infections and bacterial vaginosis. Drugs. 1996; 51: 621–38.

    Article  PubMed  CAS  Google Scholar 

  129. Tenebaum H, Cuisinier FJG, Le Liboux A, et al. Secnidaozle conentrations in plasma and crevicular fluid after a single oral dose. J Clin Periodontol. 1993; 20: 505–8.

    Article  Google Scholar 

  130. Maurice M, Pichard L, Daujat M, et al. Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J. 1992; 6: 752–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Lamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamp, K.C., Freeman, C.D., Klutman, N.E. et al. Pharmacokinetics and Pharmacodynamics of the Nitroimidazole Antimicrobials. Clin Pharmacokinet 36, 353–373 (1999). https://doi.org/10.2165/00003088-199936050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199936050-00004

Keywords

Navigation