Paper:
Compact Force Sensor Using AT-Cut Quartz Crystal Resonator Supported by Novel Retention Mechanism
Keisuke Narumi*, Ayumi Asakura*, Toshio Fukuda**, and Fumihito Arai*
*Department of Bioengineering and Robotics, Tohoku University
6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan
**Department of Micro-Nano Systems Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- [1] J. G. da Silva, A. A. de Carvalho, and D. D. da Silva, “A Strain Gauge Tactile Sensor for Finger-Mounted Applications,” IEEE Trans. Instrum. Meas., Vol.51, No.1, pp. 18-22, 2002.
- [2] URL:http://www.olympus.co.jp Dec. 1999.
- [3] M.T. S.R. Gomes, A.C. Duarte, and J. A.B.P. Oliveira, “Detection of CO2 using a quartz crystal microbalance,” Sens. Actuators B, Vol.26-27, pp. 191-194, 1995.
- [4] M.T. S.R. Gomes, M. I.S. Verissimo, and J. A.B.P. Oliveira, “Detection of volatile amines using a quartz crystal with gold electrodes,” Sens. Actuators B, Vol.57, pp. 261-267, 1999.
- [5] L. Spassov, V. Georgiev, L. Vergov, and N. Vladimirova, “Thermosensitive quartz resonators at cryogenic temperatures,” Sens. Actuators A, Vol.62, pp. 484-487, 1997.
- [6] T. G. Leblois and C. R. Tellier, “Some investigations on doubly-rotated quartz resonant temperature sensors,” Sens. Actuators A, Vol.99, pp. 256-269, 2002.
- [7] F. P. Delannoy, B. Sorli, and A. Boyer, “Quartz Crystal Microbalance (QCM) used as humidity sensor,” Sens. Actuators A, Vol.84, pp. 285-291, 2000.
- [8] Y. Zhang, K. Yu, R. Xu, D. Jiang, L. Luo, and Z. Zhu, “Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor,” Sens. Actuators A, Vol.120, pp. 142-145, 2005.
- [9] K. Kon, N. Tsukahara, and M. Shimomura, “DNA sensing with a quartz crystal device for determination of microorganisms,” Sens. Actuators B, Sep. 2006.
- [10] A. Ballato and R. Bechman, “Effect of initial stress in vibrating quartz plates,” Proc. IRE, Vol.48, pp. 261-262, 1960.
- [11] J. Ratajski, “Force frequency coefficient of singly rotated vibrating quartz crystals,” IBM J. Dev. Res., pp. 92-99, Jan. 1968.
- [12] B. Dumlet, R. Bourquin, and N. Shibanova, “Frequency-output force sensor using a multimode doubly rotated quartz resonator,” Sens, Actuators A, Vol.48, pp. 109-116, 1995.
- [13] E. Bens, M. Groschl, W. Burger, and M. Schmid, “Sensors based on piezoelectric resonators,” Sens. Actuators A, Vol.48, pp. 1-21, 1995.
- [14] S. Muraoka, “Force sensor with quartz resonators by differential method,” Trans. SICE, Vol.33, No.12, p. 1117-1123, 1997.
- [15] L. D. Clayotn, and E. P. EerNisse, “Quartz Thickness-shear mode pressure sensor design for enhanced sensitivity,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol.45, No.5, pp. 1196-1203, Sep. 1998.
- [16] Y. G. Dong, J. S. Wang, G. P. Feng, and X. H. Wang, “Self-Temperature-Testing of the Quartz Resonant Force Sensor,” IEEE Trans. Instrum. Meas., Vol.48, No.6, pp. 1038-1040, Dec. 1999.
- [17] E. P. EerNisse, “Review of Thickness-Shear Mode Quartz Resonator Sensors for Temperature and Pressure,” IEEE Sens. J., Vol.1, No.1, pp. 79-87, Jun. 2001.
- [18] Z. Wang, H. Zhu, Y. Dong, and G. Feng, “A thickness-shear quartz force sensor with dual-mode temperature compensation,” IEEE Sens. J., Vol.3, No.4, pp. 490-497, Aug. 2003.
- [19] S. Muraoka and H. Nishimura, “Characteristics of a rectangular AT cut quartz resonator as a force sensor, Collected papers of the society of Instrument and Control Engineers, Vol.32, No.4, pp. 604-606, 1996.
- [20] P. Kim, “Microcontroller oscillator design guide,” AN588 by Microchip Technology Inc., 1997.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2009 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.