Paper:
Topic Model Based New Event Detection Within Topics
Yaoyi Xi, Bicheng Li, and Yongwang Tang
Zhengzhou Information Science and Technology Institute
Zhengzhou 450002, China
- [1] J. Allan, Topic detection and tracking: event-based information organization, Springer, 2002.
- [2] T. Brants, F. Chen, and A. Farahat, “A system for new event detection,” Proc. of the 26th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, ACM, pp. 330-337, 2003.
- [3] G. Kumaran and J. Allan, “Using names and topics for new event detection,” Proc. of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 121-128, 2005.
- [4] Y. Yang, T. Pierce, and J. Carbonell, “A study of retrospective and on-line event detection,” Proc. of the 21st Annual Int. ACM SIGIR Conf. on Research and development in information retrieval, ACM, pp. 28-36, 1998.
- [5] X. Guo, Y. Xiang, Q. Chen, et al., “LDA-based online topic detection using tensor factorization,” J. of Information Science, Vol.39, No.4, pp. 459-469, 2013.
- [6] G. Luo, C. Tang, and P. S. Yu, “Resource-adaptive real-time new event detection,” Proc. of the 2007 ACM SIGMOD Int. Conf. on Management of data, ACM, pp. 497-508, 2007.
- [7] Y. Hu, L. Bai, and W. Zhang, “Modeling and Analyzing Topic Evolution,” ACTA AUTOMATICA SINICA, Vol.38, No.10, pp. 1690-1697, 2012.
- [8] Y. Hu, L. Bai, and W. Zhang, “OLDA-based method for online topic evolution in network public opinion analysis,” J. of National University of Defense Technology, Vol.34, No.1, pp. 150-154, 2012.
- [9] J. H. Lau, N. Collier, and T. Baldwin, “On-line Trend Analysis with Topic Models: #Twitter Trends Detection Topic Model Online,” Proc. of the 24th Int. Conf. on Computational Linguistics, pp. 1519-1534, 2012.
- [10] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Beli, “Hierarchical Dirichlet processes,” J. of the American Statistical Association, Vol.101, No.476, pp. 1566-1581, 2006.
- [11] M. Serizawa and I. Kobayashi, “Topic Tracking Based on Identifying Proper No.of the Latent Topics in Documents,” J. of Advanced Computational Intelligence and Intelligent Informatics (JACIII), Vol.16, No.5, pp. 611-618, 2012.
- [12] L. Huang and L. Huang, “Optimized Event Storyline Generation based on Mixture-Event-Aspect Model,” Proc. of the 2013 Conf. on Empirical Methods in Natural Language Processing, pp. 726-735, 2013.
- [13] S. Xu, S. Wang, and Y. Zhang, “Summarizing Complex Events: a Cross-modal Solution of Storylines Extraction and Reconstruction,” Proc. of the 2013 Conf. on Empirical Methods in Natural Language Processing, pp. 1281-1291, 2013.
- [14] J. Li and S. Li, “Evolutionary Hierarchical Dirichlet Process for Timeline Summarization,” Proc. of the 51st Annual Meeting of the Association for Computational Linguistics, pp. 556-560, 2013.
- [15] A. Ahmed and E. P. Xing, “Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream,” Proc. of the 26th Int. Conf. on Uncertainty in Artificial Intelligence, 2010.
- [16] S. Petrovi'c, M. Osborne, and V. Lavrenko, “Streaming first story detection with application to twitter,” Human Language Technologies: The 2010 Annual Conf. of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 181-189, 2010.
- [17] X. Wang, F. Zhu, J. Jiang, and S. Li, “Real time event detection in twitter, Web-Age Information Management,” Springer Berlin Heidelberg, pp. 502-513, 2013.
- [18] Soboroff and D. Harman, “Novelty detection: the trec experience,” Proc. of the Conf. on Human Language Technology and Empirical Methods in Natural Language Processing, Association for Computational Linguistics, pp. 105-112, 2005.
- [19] Y. Zhang, J. Callan, and T. Minka, “Novelty and redundancy detection in adaptive filtering,” Proc. of the 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, ACM, pp. 81-88, 2002.
- [20] X. Li, L. Du, and Y. Shen, “Update Summarization via Graph-Based Sentence Ranking,” IEEE Trans. on Knowledge and Data Engineering, Vol.25, No.5, pp. 1162-1174, 2013.
- [21] J. Li, S. Li, X. Wang, Y. Tian, and B. Chang, “Update Summarization Using a Multi-level Hierarchical Dirichlet Process Model,” Proc. of the 24th Int. Conf. on Computational Linguistics, pp. 1603-1618, 2012.
- [22] D. M. Blei and J. D. Laerty, “Dynamic topic models,” ICML, pp. 113-120, 2006.
- [23] The 2004 Topic Detection and Tracking (TDT2004) Task Definition and Evaluation Plan [H], version 1.2,
http://www. nist. gov. - [24] J. Allan, V. Lavrenko, D. Malin, and R. Swan, “Detections, bounds, and timelines: Umass and tdt-3,” Proc. of Topic Detection and Tracking Workshop, pp. 167-174, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.