Paper:
Flexible Route Planning for Sightseeing with Fuzzy Random and Fatigue-Dependent Satisfactions
Takashi Hasuike*1, Hideki Katagiri*2, Hiroe Tsubaki*3,
and Hiroshi Tsuda*4
*1Graduate School of Information Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
*2Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
*3Department of Data Science, The Institute of Statistical Mathematics, 10-3 Midorimachi, Tachikawa, Tokyo 190-8562, Japan
*4Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
- [1] W. Souffriau, P. Vansteenwegen, J. Vertommen, G. V. Berghe, and D. V. Oudheusden, “A personalized tourist trip design algorithm for mobile tourist guides,” Applied Artificial Intelligence, Vol.22, No.10, pp. 964-985, 2008.
- [2] K. G. Zografos and K. N. Androutsopoulos, “Algorithms for itinerary planning in multimodal transportation networks,” IEEE Trans. on Intelligent Transportation System, Vol.9, No.1, pp. 175-184, 2008.
- [3] R. A. Abbaspour and F. Samadzadegan, “Time-dependent personal tour planning and scheduling in metropolises,” Expert Systems with Applications, Vol.38, pp. 12439-12452, 2011.
- [4] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol.8, pp. 338-353, 1965.
- [5] C. Carlsson and R. Fuller, “Fuzzy Reasoning in Decision Making and Optimization,” Physica Verlag, 2002.
- [6] H. Kwakernaak, “Fuzzy random variable-I,” Information Sciences, Vol.15, pp. 1-29, 1978.
- [7] M. L. Puri and D. A. Ralescu, “Fuzzy random variables,” J. ofMathematical Analysis and Applications, Vol.114, pp. 409-422, 1986.
- [8] R. R. Yager, “A procedure for ordering fuzzy subsets of the unit interval,” Information Sciences, Vol.24, pp. 143-161, 1981.
- [9] M. Fischetti, J. S. Gonzalez, and P. Toth, “Solving the orienteering problem through branch-and-cut,” INFORMS J. on Computing, Vol.10, No.2, pp. 133-148, 1998.
- [10] I. M. Chao, B. L. Golden, and E. A. Wasil, “A fast and effective heuristic for the orienteering problem,” European J. of Operational Research, Vol.88, No.3, pp. 475-489, 1996.
- [11] J. L. Kennington and C. D. Nicholson, “The uncapacitated timespace fixed-charge network flow problem; an empirical investigation of procedures for arc capacity assignment,” INFORMS J. of Computing, Vol.22, pp. 326-337, 2009.
- [12] Q. Wang, X. Sun, B.L. Golden, and J. Jia, “Using artificial neural networks to solve the orienteering problem,” Annals of Operations Research, Vol.61, pp. 111-120, 1995.
- [13] M. Gendreau, G. Laporte, and F. Semet, “A tabu search heuristic for the undirected selective traveling salesman problem,” European J. of Operational Research, Vol.106, No.2-3, pp. 539-545, 1998.
- [14] H. Tang and E. Miller-Hooks, “A tabu search heuristic for the team orienteering problem,” Computers & Operations Research, Vol.32, pp. 1379-1407, 2005.
- [15] L. Ke, C. Archetti, and Z. Feng, “Ants can solve the team orienteering problem,” Computers & Industrial Engineering, Vol.54, No.3, pp. 648-665, 2008.
- [16] M. Fischetti, J. J. Salazar-Gonzalez, and P. Toth, “The generalized traveling salesman and orienteering problems,” In G. Gutin & A. P. Punnen (Eds.), The traveling salesman problem and its variations, Dordrecht: Kluwer Academic Publisher, pp. 609-662, 2002.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.