Paper:
Views over last 60 days: 684
Fast Neuro-Classification of New and Used Bills Using Spectral Patterns of Acoustic Data
Dongshik Kang, Sigeru Omatu and Michifumi Yoshioka
College of Engineering, Osaka Prefecture University 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
Received:October 5, 1998Accepted:February 20, 1999Published:January 20, 2000
Keywords:Adaptive digital filter, LVQ algorithm, IA algorithm, Transaction machine
Abstract
An advanced neuro-classification of new and used bills using the spectral patterns is proposed. An acoustic spectral pattern is obtained from the output of the two-stage adaptive digital filters (ADFs) for time-series acoustic data. The acoustic spectral patterns are fed to a competitive neural network, and classified into some categories which show worn-out degrees of the bill. The proposed method is based on extension of an ADF, an individual adaptation (IA) algorithm, and a learning vector quantization (LVQ) algorithm. The experimental results show that the proposed method is useful to classify new and used bills.
Cite this article as:D. Kang, S. Omatu, and M. Yoshioka, “Fast Neuro-Classification of New and Used Bills Using Spectral Patterns of Acoustic Data,” J. Adv. Comput. Intell. Intell. Inform., Vol.4 No.1, pp. 12-17, 2000.Data files: