Paper:
Two-Dimensional Copulas as Important Binary Aggregation Operators
Endre Pap*, and Marta Takács**
*Department of Mathematics and Informatics, Faculty of Natural Sciences and Mathematics in Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro
**Budapest Tech, John von Neumann Faculty of Informatics, H-1034 Budapest, Bécsi út 96.b, Hungary
- [1] T. Calvo, G. Mayor, and R. Mesiar (Eds.), “Aggregation Operators. New Trends and Applications,” Physica-Verlag, Heidelberg, 2002.
- [2] P. Capéraà, A.-L. Fougères, and C. Genest, “Bivariate distributions with given extreme value attractor,” J. Multivariate Anal., 72, pp. 30-49, 2000.
- [3] G. Choquet, “Theory of capacities,” Ann. Inst. Fourier (Grenoble), 5 (1953-1954), pp. 131-292.
- [4] I. Cuculescu, and R. Theodorescu, “Extreme value attractors for star unimodal copulas,” C. R. Math. Acad. Sci. Paris, 334, pp. 689-692, 2002.
- [5] W. F. Darsow, B. Nguyen, and E. T. Olsen, “Copulas and Markov processes,” Illinois J. Math., 36: pp. 600-642, 1992.
- [6] J. C. Fodor, and M. Roubens, “Fuzzy Preference Modelling and Multicriteria Decision Support,” Kluwer Academic Publishers, Dordrecht, 1994.
- [7] M. J. Frank, “On the simultaneous associativity of F(x, y) and x+y-F(x, y),” Aequationes Math., 19, pp. 194-226, 1979.
- [8] J. Galambos, “The Asymptotic Theory of Extreme Order Statistics,” Robert E. Krieger Publishing, Melbourne (FL), 1987.
- [9] C. Genest, and L.-P. Rivest, “A characterization of Gumbel’s family of extreme value distributions,” Statist. Probab. Lett., 8, pp. 207-211, 1989.
- [10] O. Hadžić, and E. Pap, “Fixed Point Theory in Probabilistic Metric Spaces,” Kluwer Academic Publishers, Dordrecht, 2001.
- [11] H. Imaoka, “On a subjective evaluation model by a generalized fuzzy integral,” Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 5: pp. 517-529, 1997.
- [12] E. P. Klement, R. Mesiar, and E. Pap, “Triangular Norms,” Kluwer Academic Publishers, Dordrecht, 2000.
- [13] E. P. Klement, R. Mesiar, and E. Pap, “Uniform approximation of associative copulas by strict and non-strict copulas,” Illinois J. Math., 45, pp. 1393-1400, 2001.
- [14] E. P. Klement, R. Mesiar, and E. Pap, “Invariant copulas,” Kybernetika (Prague), 38, pp. 275-285, 2002.
- [15] E. P. Klement, R. Mesiar, and E. Pap, “Measure-based aggregation operators,” Fuzzy Sets and Systems, 142, pp. 3-14, 2004.
- [16] E. P. Klement, R. Mesiar, and E. Pap, “Archimax copulas and invariance under transformations,” C. R. Math. Acad. Sci. Paris, 340, pp. 755-758, 2005.
- [17] E. P. Klement, R. Mesiar, and E. Pap, “Transformations of copulas,” Kybernetika (Prague), 41, pp. 425-434, 2005.
- [18] G. J. Klir, and T. A. Folger, “Fuzzy Sets, Uncertainty, and Information,” Prentice Hall, Englewood Cliff, 1988.
- [19] A. Kolesárova, “1-Lipschitz aggregation operators and quasi copulas,” Kybernetika (Prague), 39, pp. 615-629, 2003.
- [20] P. Mikusiński, and M. D. Taylor, “A remark on associative copulas,” Comment. Math. Univ. Carolin., 40, pp. 789-793, 1999.
- [21] R. B. Nelsen, “An Introduction to Copulas,” Lecture Notes in Statistics 139, Springer, New York, 1999.
- [22] E. Pap, “Null-Additive Set Functions,” Kluwer Academic Publishers, Dordrecht, 1995.
- [23] J. Pickands, “Multivariate extreme value distributions,” Bull. Inst. Internat. Statist., 49, pp. 859-878 (with a discussion, pp. 894-902), 1981.
- [24] T. Rückschlossová, “Aggregation Operators and Invariantness,” Ph.D. thesis, Slovak University of Technology, Bratislava, 2003.
- [25] B. Schweizer, and A. Sklar, “Probabilistic Metric Spaces,” North-Holland, New York, 1983.
- [26] A. Sklar, “Fonctions de répartition à n dimensions et leurs marges,” Publ. Inst. Statist. Univ. Paris, 8, pp. 229-231, 1959.
- [27] J. A. Tawn, “Bivariate extreme value theory: models and estimation,” Biometrika, 75, pp. 397-415, 1988.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.