Nothing Special   »   [go: up one dir, main page]

single-au.php

IJAT Vol.18 No.1 pp. 92-103
doi: 10.20965/ijat.2024.p0092
(2024)

Research Paper:

Phase Retrieval Algorithm for Surface Topography Measurement Using Multi-Wavelength Scattering Spectroscopy

Satoshi Itakura, Tsutomu Uenohara, Yasuhiro Mizutani, and Yasuhiro Takaya

Department of Mechanical Engineering, Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Corresponding author

Received:
June 23, 2023
Accepted:
October 10, 2023
Published:
January 5, 2024
Keywords:
laser inverse scattering method, surface topography measurement
Abstract

We are currently developing a high-precision and wide-range in-process surface topography measurement system using the laser inverse scattering method. In the laser inverse scattering method, a monochromatic plane wave is illuminated perpendicular to the target surface and the surface topography is measured by retrieving the phase distribution of the reflected light. However, the dynamic range of this method is limited to the sub-micrometer range because of phase wrapping during phase retrieval. In this paper, we propose a laser inverse scattering method using a multi-wavelength light source based on the fact that the phase of light is inversely proportional to the wavelength with the propagation distance as a coefficient. We also constructed a surface profilometer based on the proposed method and measured the profile of a single rectangular groove with a width of 50 µm and a depth of 2 µm. The dimensions of the measured profiles agree well with the nominal dimensions of the rectangular groove.

Cite this article as:
S. Itakura, T. Uenohara, Y. Mizutani, and Y. Takaya, “Phase Retrieval Algorithm for Surface Topography Measurement Using Multi-Wavelength Scattering Spectroscopy,” Int. J. Automation Technol., Vol.18 No.1, pp. 92-103, 2024.
Data files:
References
  1. [1] Y. Wang, Q. Zhao, Y. Shang, P. Lv, B. Guo, and L. Zhao, “Ultraprecision Machining of Fresnel Microstructure on Die Steel Using Single Crystal Diamond Tool,” J. of Materials Processing Technology, Vol.211, No.12, pp. 2152-2159, 2011. https://doi.org/10.1016/j.jmatprotec.2011.07.018
  2. [2] M. Davies, B. Dutterer, T. Suleski, J. Silny, and E. Kim, “Diamond Machining of Diffraction Gratings for Imaging Spectrometers,” Precision Engineering, Vol.36, No.2, pp. 334-338, 2012. https://doi.org/10.1016/j.precisioneng.2011.09.006
  3. [3] A. Partanen, J. Väyrynen, S. Hassinen, H. Tuovinen, J. Mutanen, T. Itkonen, P. Silfsten, P. Pääkkönen, M. Kuittinen, K. Mönkkönen, and T. Venäläinen, “Fabrication of Terahertz Wire-Grid Polarizers,” Appl. Opt., Vol.51, No.35, pp. 8360-8365, 2012. https://doi.org/10.1364/AO.51.008360
  4. [4] Y. Takaya, “In-Process and On-Machine Measurement of Machining Accuracy for Process and Product Quality Management: A Review,” Int. J. Automation Technol., Vol.8, No.1, pp. 4-19, 2014. https://doi.org/10.20965/ijat.2014.p0004
  5. [5] W. Gao, H. Haitjema, F. Fang, R. Leach, C. Cheung, E. Savio, and J. Linares, “On-Machine and in-Process Surface Metrology for Precision Manufacturing,” CIRP Annals, Vol.68, Issue 2, pp. 843-866, 2019. https://doi.org/10.1016/j.cirp.2019.05.005
  6. [6] L. C. Chen and X. L. Nguyen, “Dynamic 3D Surface Profilometry Using a Novel Colour Pattern Encoded with a Multiple Triangular Model,” Measurement Science and Technology, Vol.21, No.5, 054009, 2010. https://doi.org/10.1088/0957-0233/21/5/054009
  7. [7] K. Takashi, U. Megumi, and M. Kaoru, “No-Scanning 3D Measurement Method Using Ultrafast Dimensional Conversion with a Chirped Optical Frequency Comb,” Scientific Reports, Vol.7, No.1, 3670, 2017. https://doi.org/10.1038/s41598-017-03953-w
  8. [8] A. Taguchi, T. Miyoshi, Y. Takaya, and S. Takahashi, “Optical 3D Profilometer for In-Process Measurement of Microsurface Based on Phase Retrieval Technique,” Precision Engineering, Vol.28, Issue 2, pp. 152-163, 2004. https://doi.org/10.1016/j.precisioneng.2003.07.002
  9. [9] R. M. Goldstein, H. A. Zebker, and C. L.Werner, “Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping,” Radio Science, Vol.23, Issue 4, pp.713-720, 1988. https://doi.org/10.1029/RS023i004p00713
  10. [10] D. C. Ghiglia and L. A. Romero, “Robust Two-Dimensional Weighted and Unweighted Phase Unwrapping That Uses Fast Transforms and Iterative Methods,” J. Opt. Soc. Am. A, Vol.11, No.1, pp. 107-117, Jan 1994. https://doi.org/10.1364/JOSAA.11.000107
  11. [11] W. Xu and I. Cumming, “A Region-Growing Algorithm for InSAR Phase Unwrapping,” IEEE Trans. on Geoscience and Remote Sensing, Vol.37, No.1, pp. 124-134, 1999. https://doi.org/10.1109/36.739143
  12. [12] M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, “Phase Unwrapping with a Regularized Phase-Tracking System,” Appl. Opt., Vol.37, Issue 10, pp. 1917-1923, 1998. https://doi.org/10.1364/AO.37.001917
  13. [13] Y.-Y. Cheng and J. C. Wyant, “Two-Wavelength Phase Shifting Interferometry,” Appl. Opt., Vol.23, Issue 24, pp. 4539-4543, 1984. https://doi.org/10.1364/AO.23.004539
  14. [14] K. Creath, Y.-Y. Cheng, and J. Wyant, “Contouring Aspheric Surfaces Using Twowavelength Phase-shifting Interferometry,” J. Opt. Soc. Am. A, Vol.32, Issue 12, pp.1455-1464, 1985. https://doi.org/10.1080/713821689
  15. [15] P. K. Upputuri, N. K. Mohan Sr., and M. P. Kothiyal Sr., “Measurement of Discontinuous Surfaces Using Multiple-Wavelength Interferometry,” Optical Engineering, Vol.48, No.7, 073603, 2009. https://doi.org/10.1117/1.3159867
  16. [16] M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light: 6th (corrected) edition,” Cambridge University Press, 1997.
  17. [17] R. W. Gerchberg, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik, Vol.35, Issue 2, pp. 237-246, 1972. https://api.semanticscholar.org/CorpusID:55691159
  18. [18] J. R. Fienup, “Phase Retrieval Algorithms: a Comparison,” Appl. Opt., Vol.21, No.15, pp. 2758-2769, 1982. https://doi.org/10.1364/AO.21.002758
  19. [19] D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical Wavefront Reconstruction: Theory and Numerical Methods,” SIAM Review, Vol.44, No.2, pp. 169-224, 2002. https://doi.org/10.1137/S003614450139075
  20. [20] J. H. Seldin and J. R. Fienup, “Numerical Investigation of the Uniqueness of Phase Retrieval,” J. Opt. Soc. Am. A, Vol.7, No.3, pp. 412-427, 1990. https://doi.org/10.1364/JOSAA.7.000412
  21. [21] L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for Hyperspectral Fluorescence Microscopy,” Opt. Express, Vol.17, No.15, pp. 12293-12308, 2009. https://doi.org/10.1364/OE.17.012293
  22. [22] L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-Resolved Image Mapping Spectrometer (IMS) with Structured Illumination,” Opt. Express, Vol.19, No.18, pp. 17439-17452, 2011. https://doi.org/10.1364/OE.19.017439

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Nov. 25, 2024