On the complexity of minimum-link path problems
DOI:
https://doi.org/10.20382/jocg.v8i2a5Abstract
We revisit the minimum-link path problem: Given a polyhedral domain and two points in it, connect the points by a polygonal path with minimum number of edges. We consider settings where the vertices and/or the edges of the path are restricted to lie on the boundary of the domain, or can be in its interior. Our results include bit complexity bounds, a novel general hardness construction, and a polynomial-time approximation scheme. We fully characterize the situation in 2 dimensions, and provide first results in dimensions 3 and higher for several variants of the problem.
Concretely, our results resolve several open problems. We prove that computing the minimum-link diffuse reflection path, motivated by ray tracing in computer graphics, is NP-hard, even for two-dimensional polygonal domains with holes. This has remained an open problem [Ghosh et al.'2012] despite a large body of work on the topic. We also resolve the open problem from [Mitchell et al.'1992] mentioned in the handbook [Goodman and Rourke'2004] (see Chapter 27.5, Open problem 3) and The Open Problems Project [http://maven.smith.edu/~orourke/TOPP/] (see Problem 22): "What is the complexity of the minimum-link path problem in 3-space?" Our results imply that the problem is NP-hard even on terrains (and hence, due to discreteness of the answer, there is no FPTAS unless P=NP), but admits a PTAS.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).