Preconditioning for the Geometric Transportation Problem
DOI:
https://doi.org/10.20382/jocg.v11i2a11Abstract
$\newcommand{\eps}{\varepsilon}$In the geometric transportation problem, we are given a collection of points $P$ in $d$-dimensional Euclidean space, and each point is given a (positive or negative integer) supply. The goal is to find a transportation map that satisfies the supplies, while minimizing the total distance traveled. This problem has been widely studied in many fields of computer science: from computational geometry, to computer vision, graphics, and machine learning.
In this work we study approximation algorithms for the geometric transportation problem. We give an algorithm which, for any fixed dimension $d$, finds a $(1+\eps)$-approximate transportation map in time nearly-linear in $n$, and polynomial in $\eps^{-1}$ and in the logarithm of the total positive supply. This is the first approximation scheme for the problem whose running time depends on $n$ as $n\cdot \mathrm{polylog}(n)$. Our techniques combine the generalized preconditioning framework of Sherman, which is grounded in continuous optimization, with simple geometric arguments to first reduce the problem to a minimum cost flow problem on a sparse graph, and then to design a good preconditioner for this latter problem.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).