Abstract
The time discretisation of the initial-value problem for a first-order evolution equation by the two-step backward differentiation formula (BDF) on a uniform grid is analysed. The evolution equation is governed by a time-dependent monotone operator that might be perturbed by a time-dependent strongly continuous operator. Well-posedness of the numerical scheme, a priori estimates, convergence of a piecewise polynomial prolongation, stability as well as smooth-data error estimates are provided relying essentially on an algebraic relation that implies the G-stability of the two-step BDF with constant time steps.
© Institute of Mathematics, NAS of Belarus
This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.