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1 Introduction 1

This document is a supplement to the main article “Statistical integration of multi-omics 2

data identifies potential therapeutic targets for MSA”. It is structured into two parts. 3

The first part, Section 2, contains the mathematical details of POPLS-DA and 4

corresponding proofs. Also, the maximum likelihood estimation algorithm is presented. 5

We discuss a strategy to select the number of joint components and the number of 6

relevant genes. We additionally discuss how to interpret the POPLS-DA parameters. 7

The second part contains additional tables and figures for the multi-omics and 8

bioinformatics analyses. We show scree plots for selecting the number of joint 9

components and number of relevant genes. We perform a permutation test to assess 10

whether the top 200 genes can significantly distinguish the two experimental groups. A 11

table of these relevant genes is presented, as well as the GO enrichment clusters for 12

those genes that were targeted by a drug. 13

2 Methods 14

For a joint analysis of the transcriptomics and proteomics datasets, we propose 15

probabilistic orthogonal partial least squares discriminant analysis (POPLS-DA). 16

2.1 Mathematical model of POPLS-DA 17

As in the main article, xt and xp are random vectors of size d representing the 18

transcriptomics and proteomics data. Further, yt and yp are univariate random 19

variables representing dummy variables for the experimental conditions (one for cells 20

overexpressing αSyn, and zero for the controls). In the POPLS-DA model, the omics 21

data and the experimental conditions are linked via latent variables ut and up of size r, 22

where r is much smaller than the data dimensions. Specific components vt and vp are 23

added to the model to capture variation of the omics data that doesn’t play a role in 24
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discriminating the two experimental groups. The numbers of specific components are rt 25

and rp, respectively. Residual variation is modeled by including noise terms et and ep 26

for the transcriptomics and proteomics datasets, and εt and εp for the random variable 27

representing the two conditions. The joint and specific latent variables ut, up, vt and vp 28

are assumed to be standard normally distributed. The residual terms et, ep, εt and εp 29

are normally distributed with zero mean and (co)variance (matrix) σ2
etId, σ

2
epId, σ

2
εt , 30

and σ2
εp . 31

The mathematical model can be written as

xt = utW
T + vtP

T
t + et xp = upW

T + vpP
T
p + ep,

yt = utβ + εt yp = upβ + εp.
(1)

The matrices W of size d× r, Pt of size d× rt and Pp of size d× rp contain the joint 32

and specific loadings for each gene. The vector β contains the regression coefficients of 33

yt and yp on the joint components ut and up. 34

In the POPLS-DA model, (xt, yt) is normally distributed with zero mean and 35

covariance matrix 36

Σt =

[
WWT + PtP

T
t + σ2

etId Wβ
βWT βTβ + σ2

εt

]
. (2)

Analogously, (xp, yp) is normally distributed with zero mean and covariance matrix 37

denoted by Σp. The set of all parameters is denoted by 38

θ = {W,β, Pt, Pp, σet , σep , σεt , σεp}. 39

2.2 Estimation with maximum likelihood 40

The data from all samples are collected in Xt, Xp Yt, and Yp. Let X = [XT
t , X

T
p ]T and 41

Y = [Y T
t , Y

T
p ]T be the datasets stacked across the rows. We propose to optimize the 42

POPLS-DA likelihood by implementing an expectation-maximization (EM) algorithm. 43

The log likelihood is given by 44

l(θ|X,Y ) = f((Xt, Yt), µ = 0,Σ = Σt) · f((Xp, yp), µ = 0,Σ = Σp) (3)

where f is a multivariate normal density function with the given mean and covariance 45

matrix. 46

We propose to optimize the likelihood using EM, where the complete data likelihood 47

can be written (with abuse of notation) as 48

lc(θ) = f(Xt|Ut, Vt)f(Yt|Ut)f(Ut)f(Vt) · f(Xp|Up, Vp)f(Yp|Up)f(Up)f(Vp). (4)

In an EM algorithm, the conditional expectation of lc(θ) given X and Y is optimized. 49

Note that the optimizations can be decoupled and performed per term. For example, 50

the first term yields the optimization problem, 51

max
θ

E[log f(Xt|Ut, Vt)|Xt, Yt] + E[log f(Xp|Up, Vp)|Xp, Yp]. (5)

With respect to W , this becomes 52

min
W

E[||Xt − UtWT − VtPT
t ||2F |Xt, Yt] + E[||Xp − UpWT − VpPT

p ||2F |Xp, Yp]. (6)

In the expectation step, we calculate the conditional expectations of the latent 53

variables. We focus on the xt terms. First, note that we can rewrite the POPLS-DA 54

model as 55

(xt, yt) = (ut, vt)Γ
T + (et, εt), (7)
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with Γt =

(
W P
βT 0

)
. Using the rules for conditional expectations of normal

distributions (e.g. see [1]) , we get

E[(ut, vt)|xt, yt] = (xt, yt)Σ
−1
(es,εs)

ΓΣ̃ut,vt ,

Var[(ut, vt)|xt, yt] = Σ̃ut,vt

(8)

where Σ̃ut,vt = (I − ΓTΣ−1(es,εs)
Γ). By replacing t with p, the conditional expectations 56

given (xp, yp) are obtained. With these expressions, the objective function (6) can be 57

optimized. 58

In the maximization step for W , we solve the optimization problem (6). Note that
both terms depend on W . Taking the derivative with respect to W and equating to zero
yields

XT
t E[Ut|Xt, Yt]−PtE[UT

t Vt|Xt, Yt] +XT
p E[Up|Xp, Yp]− PpE[UT

p Vp|Xp, Yp] =

W{E[UT
t Ut|Xt, Yt] + E[UT

p Up|Xp, Yp]}
(9)

The expected values are taken from the expectation step. This yields the maimization
step for W , which is given below. Optimizers for the other terms of the complete
likelihood are obtained similarly. The complete EM algorithm for POPLS-DA is given
by the following iterative scheme in k, starting with initial values for k = 0 and s = t, p,

W k+1 = (
∑
s=t,p

XT
s Ek[Us]− P ks Ek[Vs]

TEk[Us])(
∑
s=t,p

Ek[UT
s Us])

−1

βk+1 = (
∑
s=t,p

Y T
s Ek[Us])(

∑
s=t,p

Ek[UT
s Us])

−1

P k+1
s = (XT

s Ek[Vs]−W k+1Ek[Us]
TEk[Vs])(Ek[V T

s Vs])
−1

(σ2
es)k+1 = (Nsd)−1Ek[ET

s Es]

(σ2
εs)k+1 = (Ns)

−1Ek[ETs Es]

(10)

In this scheme, Ek[·] = E[·|X,Y, θk]. 59

2.3 Interpretation of POPLS-DA. 60

For sake of brevity, we will drop the subscript t and p in this paragraph. In the article, 61

x in Equation (1) represents the transcriptomics and proteomics data. The 62

experimental conditions for each omics dataset are indicated by y. POPLS-DA models 63

the relationship between all omics data and conditions simultaneously in terms of the 64

joint latent variables u. The loadings W represent the projection of the omics data onto 65

the u. In our model, the loading weight for gene j in joint principal component k is 66

given by wj,k. A larger weight indicates a larger relative contribution to that joint 67

component. Furthermore, if wj,k and wj′,k have the same sign, the corresponding genes 68

j and j′ are positively correlated within component k. The number (Wβ)j =
∑
k wj,kβk 69

is the coefficient indicating the relationship between gene j with the experimental 70

groups. The vector Wβ can be interpreted as the covariance of y with all omics data x. 71

The latent variable ui,k indicates the position of data point xi in the joint component k. 72

Two subjects i and i′ are similarly positioned if ui,k and ui′,k are similar numbers. The 73

interpretation of v and P goes analogously. A visual schedule of the estimation is given 74

in Figure 1. 75
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Figure 1. A visual scheme of the POPLS-DA component estimation. The
features (purple rectangles) are given weights W (in blue) according to their relative
importance in modeling the outcome y. The linear combination of features, weighted by
the weights, form a component T . The weights are chosen such that the joint
log-likelihood is optimized, where the distance between Tβ and y is minimized.

2.4 Dimension selection. 76

The POPLS-DA model is formulated conditional on the number of joint and specific 77

components, r and rx, respectively. To estimate the number of components and the 78

number of variables to investigate, we consider scree plots [2]. For the number of 79

components, we calculate the eigenvalues of the stacked dataset X = [XT
1 , . . . , X

T
s ]T 80

and inspect the corresponding scree plot. To determine the number of variables per 81

component to investigate, we calculate the estimated effect size Wβ of each variable 82

and use the “elbow” criterion on the sorted effect sizes (as in a scree plot [2]). 83

The proportions of variance explained by the joint and specific parts are calculated 84

by dividing the trace of the corresponding covariance matrices by the trace of the 85

modeled covariance matrix. In particular, the proportion of the variance of xt explained 86

by the joint part can be calculated by trWTW divided by trWTW + trPT
t Pt + dσ2

et . 87

3 Results 88

In this section, we present the supplementary figures and tables corresponding to the 89

data analysis in the main article. 90

Scree plots of the eigenvalues of transcriptomics and proteomics datasets are shown 91

in Figure 3, together with a scree plot of the effect sizes Wβ. Based on visually 92

assessing where a plateau occurs, two joint and two specific components were selected. 93

Furthermore, based on the visual assessment of the occurrence of an elbow, 200 genes 94

were retained for interactome and functional analyses. These genes are given in Table 1. 95

We performed a permutation test where we randomly shuffled the case-control label 96

for each sample. We then apply POPLS-DA again and calculate the overall accuracy 97

(number of samples correctly classified based on the top 200 genes). The number of 98

permutations was 400. In one permutation round, POPLS-DA achieved a perfect 99

classification, corresponding with a p-value of 0.0025 (standard error: 0.0025). The 100

median overall accuracy was 41.7% (equivalent to 10 out of 24 samples correct 101

classifications). 102

The GO enrichment clusters for the subset of genes targeted by a drug are shown in 103

Table 2. The list of drugs with their direct neighbors are shown in Table 3. 104

Finally, the String-DB networks from Fig. 3 are shown here enlarged in Figure 4, 5, 105

6, and 7. 106
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Table 1. Top 200 genes in the joint transcriptomics-proteomics part. The
weights are estimated with POPLS-DA, and indicate the contribution of each gene
towards the classification.
weight SYMBOL weight SYMBOL weight SYMBOL weight SYMBOL
0.338 MTHFD2 0.264 ESYT1 0.242 DDX3X 0.227 AATF
0.33 CBS 0.264 SLC4A7 0.242 MXRA7 0.227 ARSA
0.328 SCG2 0.264 PLD3 0.241 RPL11 0.227 UFD1L
0.326 TFRC 0.262 GPC6 0.24 PHGDH 0.227 MYO5A
0.322 NES 0.262 ALDH6A1 0.24 P2RX3 0.227 RP2
0.322 SLC3A2 0.262 MYCBP2 0.24 ARHGAP17 0.226 RPL6
0.322 SCARB2 0.262 RRM1 0.24 EEF2 0.226 WARS
0.322 FAT1 0.261 MAPK8IP3 0.239 SPTLC2 0.226 REM2
0.318 SLC7A5 0.261 SARM1 0.239 NEDD4L 0.226 ACBD3
0.318 POLDIP3 0.261 RCN2 0.239 TJP1 0.226 PDIA6
0.313 NRP2 0.261 PEG10 0.239 PON2 0.225 ENDOD1
0.312 ASNS 0.261 P4HB 0.238 HSPA5 0.225 SND1
0.312 AIMP2 0.261 SEC61A1 0.238 RPL38 0.225 NAV1
0.306 TNC 0.26 BCAT1 0.238 RPSA 0.225 PYCR1
0.306 CNTN2 0.259 ZYX 0.238 HYOU1 0.224 LAMP1
0.302 FABP3 0.258 DDX17 0.238 PSME2 0.224 TOR1B
0.301 RPS4X 0.258 GNS 0.237 MARS 0.224 SMPD1
0.301 SYT1 0.256 STX12 0.236 RRAS2 0.224 YBX1
0.298 STXBP1 0.256 ERGIC1 0.236 HSPB1 0.223 RAD21
0.297 SRL 0.256 ABCB6 0.235 ALDH9A1 0.223 CARS
0.297 PAFAH1B1 0.256 HPDL 0.235 VAV2 0.223 SEMA6D
0.296 PSAT1 0.255 CKMT1B 0.235 GAA 0.223 ADAR
0.296 KIF5C 0.254 NEFM 0.234 NUDT21 0.223 EEF1B2
0.294 BRD3 0.253 RPAP3 0.234 ARID3B 0.223 CSTF3
0.293 CNTNAP1 0.252 PRKAR2A 0.234 LUC7L2 0.223 SLC2A1
0.287 EEF1A2 0.251 ESD 0.234 KATNB1 0.223 POLR2A
0.285 OSBP 0.251 ENO3 0.234 ADD1 0.222 C11orf54
0.284 VIM 0.251 IQSEC1 0.234 CALU 0.222 RPS7
0.283 ACAT1 0.25 ATP6V1C1 0.234 VCL 0.222 HMGCR
0.283 IGF2R 0.25 GATAD2A 0.234 AP2A2 0.222 RPS3
0.282 SHMT2 0.249 VAT1 0.233 GLUD1 0.222 CLCN6
0.282 DNAJB11 0.249 USP9X 0.233 HDGFRP3 0.222 GLDC
0.282 NQO1 0.248 RPS24 0.233 YTHDC1 0.222 RPL4
0.281 RPL7A 0.248 SDF4 0.233 DICER1 0.221 EIF4B
0.28 CCDC50 0.248 YARS 0.232 RPS21 0.221 COL6A1
0.277 ECEL1 0.248 TAF15 0.232 CYB5A 0.221 RCC1
0.277 ALDH7A1 0.246 PDLIM3 0.232 GBA2 0.221 CADM4
0.277 GARS 0.246 ACTC1 0.231 NDUFA11 0.221 GOLM1
0.275 SPTBN1 0.246 FAR1 0.231 SMARCA1 0.221 AARS
0.275 MAP2K6 0.246 PDCD4 0.231 XPO5 0.22 THNSL1
0.27 MDGA1 0.245 HAX1 0.231 NCBP1 0.22 FAM171A1
0.269 RAB10 0.245 RAPGEF6 0.23 TARS 0.22 SLC7A6
0.267 RABGAP1 0.245 ANK2 0.23 MAP1A 0.22 CTSC
0.267 FYN 0.244 DSG2 0.23 MUT 0.22 SLC9A3R1
0.267 RCN1 0.244 RPL8 0.229 SYT11 0.22 SNRNP200
0.266 EPB41L5 0.244 SMC3 0.229 GRIPAP1 0.219 CLIC1
0.265 EIF5 0.243 OXCT1 0.229 APLP2 0.219 DPM1
0.265 LGALS3BP 0.242 FAHD2A 0.229 NAPB 0.219 HDGF
0.265 SLC1A4 0.242 FKBP2 0.229 NDUFA13 0.219 AKAP12
0.265 RFX3 0.242 ATP2C1 0.228 SPIN1 0.219 PSIP1
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Figure 2. POPLS-DA joint scores. Each dot is an individual sample. Cell lines
overexpressing α-synuclein are indicated by an yellow color, cell lines overexpressing the
control protein are colored blue. A 90% confidence ellipse is added based on a t
distribution.

Table 2. Gene ontology enrichment analysis of drug targeted genes. A subset
of the top 200 genes, consisting of 116 genes that are (indirectly) targeted by an FDA
approved drug compound, were used to perform GO enrichment analysis. The twenty
most significant terms are shown.

Rank Term Ontology Genes in set

1 extracellular exosome CC 7.54e-22
2 extracellular vesicle CC 7.78e-22
3 extracellular membrane-bounded organelle CC 7.94e-22
4 extracellular organelle CC 7.94e-22
5 cytoplasm CC 2.39e-17
6 vesicle CC 2.69e-16
7 extracellular space CC 1.49e-15
8 cell junction CC 1.05e-14
9 extracellular region CC 3.19e-13
10 translation BP 5.82e-12
11 amide biosynthetic process BP 7.94e-12
12 peptide biosynthetic process BP 1.33e-11
13 melanosome CC 2.79e-11
14 pigment granule CC 2.79e-11
15 RNA binding MF 7.63e-11
16 cytoplasmic translation BP 1.09e-10
17 developmental process BP 1.33e-10
18 cellular amide metabolic process BP 1.59e-10
19 focal adhesion CC 2.08e-10
20 cell-substrate junction CC 2.98e-10
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Figure 3. Scree plots for POPLS-DA. The number of components or genes is
selected by visually assessing where a plateau or ‘elbow’ curve occurs. The upper panel
shows the squared singular values of the stacked transcriptomics and proteomics data.
The numbers are rescaled to sum up to one. The lower panel shows the sorted squared
effect size per gene given by the squared elements of Wβ.
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Table 3. List of the drugs and their direct neighbors. For each validated drug,
the genes in the top 200 that interact with any drug target are shown.
Drug Genes

Ajmaline SPTBN1, ACTC1, ANK2, DSG2, SPTLC2, NEDD4L, NAV1
Amiodarone CBS, SCG2, TFRC, NES, SCARB2, FAT1, TNC, FABP3, SYT1, EEF1A2, VIM,

IGF2R, NQO1, FYN, RCN1, LGALS3BP, P4HB, GATAD2A, ACTC1, PDCD4,
HAX1, EEF2, TJP1, PON2, HSPA5, RPSA, HSPB1, ALDH9A1, ADD1, CALU,
DICER1, GBA2, NCBP1, APLP2, WARS, NAV1, PYCR1, LAMP1, YBX1,
SLC2A1, HMGCR, CTSC, SLC9A3R1, CLIC1

Amlodipine SCARB2, SYT1, STXBP1, NQO1, ESD, PDLIM3, ACTC1, HAX1, ANK2,
SPTLC2, HSPA5, GAA, ADD1, GBA2, ARSA, REM2, NAV1, LAMP1, YBX1,
SLC2A1, HMGCR

Astemizole CBS, NES, CNTN2, STXBP1, KIF5C, NQO1, MDGA1, FYN, P4HB, NEFM,
HAX1, ANK2, DSG2, EEF2, NEDD4L, HSPA5, ADD1, GBA2, NDUFA11, SYT11,
APLP2, AATF, NAV1, YBX1, SLC2A1, HMGCR

Benazepril MTHFD2, CBS, SLC3A2, SLC7A5, SHMT2, NQO1, SLC1A4, ABCB6, DSG2,
MARS, GAA, ADD1, MUT, SLC2A1, HMGCR, CLCN6, GLDC, SLC7A6

Bepridil POLDIP3, SYT1, RPS4X, STXBP1, VIM, IGF2R, NQO1, RCN2, PEG10,
SEC61A1, ABCB6, ACTC1, HAX1, ANK2, DSG2, RPL8, DDX3X, RPL11, EEF2,
NEDD4L, HSPA5, RPL38, ADD1, AP2A2, RPS21, GBA2, SYT11, MYO5A,
REM2, NAV1, LAMP1, YBX1, SLC2A1, RPS7, HMGCR, RPS3

Pentoxyverine ACAT1, ANK2, DSG2, P2RX3, NEDD4L, HSPA5, NAV1, YBX1, HMGCR,
SLC9A3R1

Clemastine NQO1
Dexibuprofen CBS, SCG2, TFRC, NES, SLC3A2, SCARB2, FAT1, SLC7A5, TNC, FABP3, SYT1,

EEF1A2, VIM, IGF2R, NQO1, FYN, RCN1, LGALS3BP, SLC1A4, SLC4A7, P4HB,
SEC61A1, GNS, ABCB6, PRKAR2A, GATAD2A, VAT1, SDF4, ACTC1, PDCD4,
HAX1, DSG2, RPL8, SMC3, EEF2, NEDD4L, TJP1, PON2, HSPA5, RPSA,
PSME2, HSPB1, ADD1, CALU, AP2A2, DICER1, GBA2, SYT11, APLP2, WARS,
PYCR1, LAMP1, YBX1, SLC2A1, HMGCR, RPS3, SLC7A6, CTSC, SLC9A3R1,
CLIC1

Dicyclomine TFRC, SLC3A2, SCARB2, SYT1, IGF2R, FKBP2, AP2A2, SYT11
Dipyridamole DDX17, PRKAR2A, ESD, PDLIM3, HAX1, RPL11, SPTLC2, HSPA5, ALDH9A1,

DICER1, GBA2, YBX1, SLC2A1, HMGCR, AARS, SLC9A3R1
Doxazosin NQO1, HAX1, HSPA5, CALU, GBA2, YBX1, SLC2A1, HMGCR
Dyclonine SPTBN1, ANK2, P2RX3, NAV1
Flunarizine POLDIP3, SYT1, NQO1, RCN2, SEC61A1, ACTC1, ANK2, DDX3X, EEF2,

ADD1, CALU, MYO5A, NAV1, HMGCR
Guanfacine SLC7A5, IGF2R, NQO1, ALDH9A1, HMGCR
Ifenprodil CNTN2, SYT1, STXBP1, SPTBN1, FYN, ANK2, APLP2
Imatinib CBS, SCG2, TFRC, NES, NRP2, TNC, FABP3, SYT1, EEF1A2, VIM, IGF2R,

NQO1, MAP2K6, FYN, RCN1, LGALS3BP, P4HB, ACTC1, HAX1, P2RX3,
EEF2, SPTLC2, NEDD4L, TJP1, PON2, HSPA5, RPSA, HSPB1, ALDH9A1,
VAV2, ADD1, CALU, AP2A2, DICER1, GBA2, APLP2, PYCR1, LAMP1, YBX1,
SLC2A1, POLR2A, HMGCR, RPS3, CADM4, CTSC, SLC9A3R1, CLIC1

Lomerizine NQO1, HAX1, HSPA5, GBA2, YBX1, SLC2A1, HMGCR
Nefazodone SCG2, NQO1, NEFM, HAX1, ANK2, DSG2, NEDD4L, HSPA5, GBA2, MAP1A,

NAV1, YBX1, CARS, SLC2A1, HMGCR
Pentamidine SLC3A2, NQO1, YARS, ALDH9A1, ADD1, DICER1
Quinacrine PAFAH1B1, VIM, IGF2R, NQO1, PLD3, HAX1, HSPA5, ALDH9A1, ADD1,

GBA2, YBX1, SLC2A1, HMGCR
Reserpine SCG2, SYT1, PAFAH1B1, IGF2R, EIF5, RRM1, USP9X, HAX1, SMC3, HSPA5,

ALDH9A1, ADD1, GBA2, YBX1, RAD21, SLC2A1, HMGCR, SLC9A3R1
Continues on next page
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Drug Genes

Risperidone CBS, SCG2, TFRC, NES, FAT1, TNC, FABP3, SYT1, EEF1A2, VIM, IGF2R,
NQO1, FYN, RCN1, LGALS3BP, P4HB, NEFM, ACTC1, HAX1, EEF2,
SPTLC2, TJP1, PON2, HSPA5, RPSA, HSPB1, ADD1, CALU, DICER1, GBA2,
MAP1A, APLP2, PYCR1, LAMP1, YBX1, CARS, SLC2A1, HMGCR, CTSC,
SLC9A3R1, CLIC1

Telmisartan TFRC, NES, SCARB2, FABP3, SYT1, IGF2R, NQO1, GATAD2A, PDCD4,
HAX1, TJP1, HSPA5, RPL38, ADD1, AP2A2, DICER1, GBA2, SYT11, WARS,
SND1, YBX1, SLC2A1, HMGCR, SLC9A3R1

Triflupromazine TFRC, SLC3A2, SCARB2, SYT1, IGF2R, HAX1, FKBP2, PON2, HSPA5,
RRAS2, AP2A2, GBA2, SYT11, YBX1, SLC2A1, HMGCR

Trimipramine SCG2, FAT1, NQO1, GARS, NEFM, HAX1, P2RX3, HSPA5, CALU, GBA2,
MAP1A, YBX1, CARS, SLC2A1, HMGCR

Tropisetron FAT1, GARS, P2RX3
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Figure 4. String-DB and clustering analyses of the top 200 genes/proteins. A network of interactions between the top
200 genes/proteins (estimated with POPLS-DA) was constructed using String-DB. Each node is a gene, and a connection
between genes indicates evidence for a biologically plausible link. Text mining was excluded as an evidence source, and a medium
confidence threshold was used. For genes that were (indirectly) targeted by a drug compound, a green ‘halo’ is drawn. The
intensity of the green color is proportional to the number of drug compounds for which the gene was an (indirect) target.
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Figure 5. String-DB and clustering analyses of the top 200 genes/proteins. The interaction network was clustered
using the MCL clustering algorithm from the String-DB website. The edges between the clusters are removed for visual aid.
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Figure 6. String-DB and clustering analyses of the top 200 genes/proteins. An interaction network is shown for a
druggable subset of the top 200 genes/proteins, consisting of 116 genes that were (indirectly) targeted by an FDA-approved drug
compound.
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Figure 7. String-DB and clustering analyses of the top 200 genes/proteins. An interaction network of top genes in the
“Parkinson’s disease” DisGeNet term was constructed using String-DB. Text mining as evidence was included here.
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