S1 Appendix

Methods

This appendix provides additional details regarding the construction of the agent-based
model used to simulate the spread of COVID-19 in the Cox’s Bazar refugee settlement
in Bangladesh.

Digital Twin
Geography

To define the three geographical levels we use shapefiles provided by UNHCR for both
the camps and the admin level 2 blocks , as well as shapefiles from IOM for the
sub-blocks , we encode the geographical hierarchy by assigning camp Admin level 2
blocks to the camps with which they overlap the most, and by assigning the IOM
sub-blocks to the the Admin level 2 blocks with which they overlap the most.
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Fig 1. Left: Household size distribution comparing the UNHCR data with the digital
twin of the Cox’s Bazar settlement, where the binning has been chosen to match
UNHCR’s reporting structure. Right: Shelter size distribution from the digital
twin.

We use data on the number of households at the sub-block (area) level as given by
IOM , and data on the total number of residents in each Admin level 2 block
(super-area) , to cluster individuals into households according to their age and sex to
create realistic demographic household structures.

To account for data mismatches between the two datasets, we rescale the IOM’s
household statistics so that the total number of residents estimated based on these
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household counts matches the total number of residents recorded in UNHCR’s census,
at the Admin level 2 block (super-area) level. Once we know the (rescaled) target
number of households for a given sub-block (area), we construct them by sampling each
household’s size from the global household size distribution reported by UNHCR [5].
Each digital household is then populated according to the following algorithm:

1. We first allocate one adult (a person older than 16 years old) to each household, if
available.

2. We iterate over all the non-full households, allocating one child (a person younger
than 16 years old) each time until all children belong to a household.

3. For each non-full household, we choose an adult from the unallocated adult
population by picking a person of the closest age to the current household adult
resident, and of the opposite sex, if available.

4. The remaining adults are randomly distributed into households that still have
space.

This algorithm naturally captures both single-headed households and child-headed
households, as well as multi-generational families all of which are important for both
protection concerns and disease spread.

In the left panel of Fig[l| we show a comparison between UNHCR data and the
household distribution for the Cox’s Bazar settlement derived from our model. The
distributions do not match perfectly due to the introduction of uncertainty when
rescaling the number of households. Nonetheless, the two distributions are in reasonable
agreement, with UNHCR reporting an average household size of 4.6 and our model
producing a mean size of 4.4 (see the left panel of Fig[I)).

After clustering households into shelters the resulting shelter size distribution is
plotted in the right panel of Fig[l] We note that, even though we underestimate the
number of larger households (8-9 people), we do not necessarily underestimate the right
tail of the shelter size distribution as we assume that all households are equally likely to
share a shelter, while in reality bigger households are probably more likely to couple
with smaller households. Furthermore, the particular realisation of the household
population is randomised for each simulation, so the tail of the particular sample
distribution changes for each run. We do not observe any noticeable effects of these
fluctuations on the overall infection rates (see 77).

Learning centers

We place the learning center into our model according to latitude/longitude coordinates
derived from the Inter Sector Coordination Group (ISCG) [11]. Children are assigned to
a daily time slot in a specific learning center, during which - from a modelling
perspective - they have the potential to interact with other children in the class, as well
as their teacher. We assume that each learning center offers four two-hour teaching
blocks per day. In our model, each classroom is assigned one teacher who is drawn
randomly from the population in the area in which the learning center is located, and
only children enrolled in the education system in the camp are sent to school (see Fig [2).
Each enrolled child will attend the learning center closest to his/her shelter, unless that
learning center has reached a maximum capacity of 35 pupils per shift, in which case
the child will go to the next closest learning center. If the nearest 50 learning centers
are all full, one of them is picked at random.
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Fig 2. Enrollment of children aged 3-15 years old in each camp as a percentage of the
total number of children living there [6-9]. Basemap from .

Dynamic locations

Using data collected by the ISCG , we place the dynamic locations using
latitude/longitude coordinates as shown in Fig ??. Hand pumps and latrines are
distributed to sub-blocks (areas) based on statistics detailing the number of individuals
sharing such facilities , while play groups are dynamically created by randomly
drawing together groups of children from neighboring shelters.

Each shelter is linked to up to 3 other shelters, and each member of a shelter can
visit one of its linked shelters during a simulation time step.

Simulator
Daily routine

To choose the activity each individual participates in at a given time step, we follow the
same methodology as used in JUNE . Each individual is assigned a Poisson parameter
according to their age and sex, A, and the probability that an individual does a certain
activity during a given time step is determined through a Poisson process. Currently,
Poisson parameters are determined only based on an individual’s age and sex, however
this can be adapted to other demographic and behaviour variables if data is available.

To assign activities to individuals, we first check if the individual does any activity
at the given time step:

p( any activity | age,sex ) =1 — p( no activity | age, sex) (1)
N

=1—exp (— Z Ao (age, sex) At) , (2)
a=1

where A, (age,sex) is the Poisson parameter associated with activity a for a person
with a given age and sex, N is the number of possible activities and At is the amount of
time allowed to do a given activity (currently this parameter is fixed at 2 hours,
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Fig 3. Infectiousness profile as a function of time derived from [14].

however can be varied if necessary). If no activity is performed then the individual
returns to their shelter.

If a person carries out an activity, the next step is to determine which specific
activity is chosen. The probability that activity a is chosen given that the person does
any activity is given by:

Aa(age, sex)
Pa = N ) (3)
> =1 Mjage, sex)

Once an activity has been determined for a given individual, they are moved to the
relevant location where they can interact with others who are also present.

When choosing which location of a given activity to attend, e.g. which communal
center to attend, individuals in the model are given a choice of their nearest 5 locations
corresponding to the relevant activity. This choice of nearest locations is decided
heuristically and can be set by location-type as required if data is available to constrain
this. We find that such a procedure gives rise to both local and inter-camp mixing.

Transmission

At each time step, different collections of individuals will inhabit the same space (e.g., a
distribution center or play group), which we will refer to as a ‘group’. Each group is a
collection of individuals in the same geographical location performing the same activity.
Individuals in the same group have the opportunity to interact with others in the group.
If one or more of the people in the group are infected, there is a chance that a
susceptible individual may become infected. To simulate the transmission of COVID-19,
we implement the transmission dynamics described in Aylett-Bullock et al. [13], which
we briefly outline here for completeness.

For a susceptible individual, s, we define the following properties: L is the location
type (e.g., distribution center); g is the set of people present in a specific location; i € g
is the subset of infectious people in that location; ¢ is the current time step; At is the
length of time that individuals remain in the location; v is the susceptibility of
individual s; Z;(+) is the infectiousness of individual ¢ over the time frame ¢ to ¢ + At;

B(L’g )() characterizes the intensity of contacts between individuals s and ¢ at a point in
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time; and Ps(-) is the probability that susceptible individual s is infected over a given
period of time.

The probability of a person, s, being infected in the time step [t,t + At] is taken to
be:

t+At

Pt a0 =1-exp [0, 3 [ AEO@OT@)ar| (4)
€9 %

As expected, staying longer in a location, being more susceptible to the disease,
being surrounded by more infectious people, and having more intense contacts all
increase the probability of disease transmission.

The intensity of the contacts, £, depends on the location, the number of people in
the group, time, and the number of contacts along with the proportion of which are
physical (as opposed to less intense conversational contacts). To represent this, the
intensity of contacts between susceptible individual s and infectious individual ¢ who are
part of group ¢ in location L at time t’ is taken to be:

B9 (1) = 5(;(” (@) |1+ (o) -1)] | (5)

where |g| is the number of people in group g, Xiz)( t') is the number of contacts

between people with the ages of individuals s and 4 over a given time period, gb( )(t’ ) is
the proportion of those contacts that are physical, and a(t') describes the additional
infection risk of the physical contacts relative to the conversational ones.

In an ideal situation, the mixing matrices Xif)(t’ ) would be derived from survey
data |15H17], but such data has not been collected in the settlement setting. Instead we
use a mixture of survey and observational data, along with various assumptions to
hypothesize mixing matrices such that they capture the broad structure of contacts in a
given location while allowing the values of the (/) (¢') parameters to absorb the details
of the precise number of contacts. A similar argument can be made for the values of
sz(L)( t'). Since «(t') is fixed for all locations, this just serves as a scaling parameter for
the physical interaction matrix and so can be arbitrarily set. We heuristically take
a(t') = 4 to account for increased intensity likely found in the settlement environment.
(The «(t') parameter serves an important purpose when fitting parameters to historical
data, although this is not the focus of this work.) We detail our choices for X(z )( t') and
relevant assumptions in the next section.

For modeling the spread of COVID-19, we use the time-dependent infectiousness
profile, Z;(t'), presented in |14] and represented in Fig|3] As in [13], we reduce the
infectiousness of asymptomatic individuals, relative to that of a symptomatic individual,
by a factor of 0.5.

When adapting the model to a disease other than COVID-19, one would need to
modify the time-dependent infectiousness profile, and the intensity parameters that
control the probability of transmission at different locations. Moreover, the different
symptom related rates described in Section 7?7 would need to be adjusted to the
observed outcomes of the new disease.

Mixing Matrices

Contact matrices are used by many modeling approaches, including ABMs, to specify
the number of contacts between different people. Common sources of these matrices are
surveys such as [15417] from which contact matrices can be derived stratified by age




and type of location in which the contact was made. Many of these surveys also
delineate between physical and conversational contacts, the former being more intense
than the latter. We account for these different types of contact through specifying a
physical contact multiplier which represents the proportion of all contacts in a given
setting which are physical in nature.

While many surveys exist at the national level, it is not clear how these apply in the
settlement setting in which living conditions, and cultural norms, can vary greatly from
their host country, or of the PoC’s country of origin. However, a key advantage of the
June framework [13] is that the precise contact matrices do not need to be fully known
in order to reproduce the age and location dependent mixing patterns found in reality.
This is because, in reality, contact matrices are largely a function of an individual’s
movement patterns and the activities they participate in. Since we naturally
incorporate this information in the setting of age and sex dependent probabilities that
an individual goes to a certain location, we just need to focus on getting the broad
character of the relative number of contacts correct, e.g. encouraging school children to
be more likely to interact with each other than the teacher in a learning center.
Furthermore, given the form of Equation [5} the scaling of the 3(F)(t) parameter by
location L absorbs the uncertainty of the total number of contacts in each location. A
similar logic applies to the proportion of contacts which are physical in nature. A full
discussion of this can be found in Section 4 and Appendix B of [13].

Adopting the naming convention of [13], we will call the input to our model “social
mixing matrices” and the derived output the “contact matrices”. Here we discuss the
input social mixing matrices for each location which are designed to capture the broad
character of the interactions in these venues. Given the degree to which full contact
matrices are unknown in this setting, we aim to keep the input social mixing matrices
simple so as to capture reasonable mixing but not overly bias results.

The choices of values in this section are chosen such that all matrices have a similar
order of magnitude effect with the exception of learning centers, where the asymmetry
in contacts between members of the participant groups (teachers and students) is most
pronounced. This means that when we group indoor and outdoor intensity parameters
8 (L) parameters) together for scenario modelling, we can create new scenarios easily by
altering the relative values of these parameters without having to separately account for
the multiplicative effect of the social mixing matrices. Furthermore, since this paper
focuses on modeling the relative efficacies of interventions, some uncertainty in the
relative social mixing matrix values is further divided.

Shelters

Some shelters in the Cox’s Bazar settlement, and other settlements, are shared between
up to two families. We assume that within each family, all individuals are equally likely
to interact with each other given the proximity of the setting. Since some shared
shelters contain dividing walls between families, but some do not, if a family shares a
shelter with another family then we assume that each family is approximately half as
likely to interact with the other family than within themselves. For the proportion of
physical contacts, we assume this scaling to be a factor of 4 different with 80% of
contacts within a household being physical, but only 20% of those with another
household who shares the same shelter. This results in:

s (5 2 sy _( 0.8 0.2
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where {i,j} € {H, O} for the household and other household entries respectively.
Here, 5 is chosen as the intra-household contact baseline in order to ensure all social




mixing matrices have a similar order of magnitude effect on the probability of
transmission.

Learning Centers

Learning centers have two key groups which can interact, students, S, and teachers, T.
To ensure that students and teachers make proportionately the correct number of
contacts given the average student-teacher ratio of 30:1 we set:

(L) _ 5 15
Miy" = ( 05 5 ’ (7)
where {i,j} € {T, S} which is in close agreement with that derived in Appendix B.2
in [13].
We assume the proportion of physical interactions to be the same among all

participants in the learning center given the closeness of the classroom setting and so
this is absorbed in the intensity parameter value.

Play groups

When modelling interaction in play groups, for simplicity we assume children in the
same age bracket play and interact with each other and do not interact with others
outside their age bracket. We define age brackets to be: 3-6 year olds, P1, 7-11 year
olds, P2, and 12-16 year olds, P3. The proportion of physical interactions are assumed
to scale by age bracket:

50 0 0.6 0 0
MFPD=105 0] and ¢/ = 0 03 0o |, (8)
00 5 0 0 0.5

where {i,j} € {P1, P2, P3}.

Other locations

Given the lack of available data on contact patterns, in all other locations in which
interactions can occur, e.g. distribution centers and communal centers, we assume the
social mixing and physical contact matrices to be single valued at ngo) =5 and

¢§f) = 0.12 respectively. This follows the same logic as that in Appendix B.4 of [13].

Comorbidities

Relative to previous simulations in refugee settings, one of our primary contributions is
the inclusion of population-specific comorbidities in our model of COVID-19 risk.
Accounting for such comorbidities is important because much of the data on COVID-19
severity comes from the developed world, where the prevalence of chronic illnesses such
as diabetes or cardiovascular disease may be unusually high, and the prevalence of
infectious diseases such as HIV/AIDS and tuberculosis may be relatively low. When
using developed-country estimates of COVID-19 risk to estimate risk in the developing
world, the differing prevalence of chronic illnesses may lead to an upward bias in the
estimated risk of severe illness due to COVID-19, whereas the differing prevalence of
infectious diseases may lead to a downward bias in the estimated risk of severe illness
due to COVID-19. Therefore, properly estimating location-specific severity rates
requires accounting for these differences in comorbidity distributions.

Our approach to accounting for comorbidities is based on the work of Clark et
al. [18], who provide estimates of how 12 different types of comorbidities influence the




relative risk of developing severe disease as defined by “severe acute respiratory illness
(fever and at least one sign/symptom of respiratory disease, e.g. cough, shortness of
breath; AND requiring hospitalization)”. In our model, we modify the definition of
severe illness to allow for the possibility of severe cases and death without
hospitalization. The complete list of conditions and risk multipliers which we adopted
from Clark et al. is included in Table[ll Given detailed estimates of the risk of
developing severe COVID-19 by age and sex in one country, Clark et al. propose a risk
adjustment method to modify these estimates for the comorbidity mix of another
country, which we adapt for our purposes and describe in more detail below.

’ Risk Group Risk Score
HIV/AIDS 1.5
Tuberculosis 1.5
Cancers with direct immunosuppression 1.5
Cancers with possible immunosuppression 1.5
Cardiovascular diseases 3
Chronic respiratory diseases 1.5
Diabetes mellitus 3
Chronic kidney diseases 3
Chronic neurological disorders 1.5
Sickle cell disorders 1.5

Table 1. Comorbidity multipliers taken from Clark et al. [19]. These multipliers
represent the relative risk of developing severe COVID-19, conditional on
being affected by the comorbidity in question. A healthy individual has a
relative risk of 1, implying that e.g. an HIV-positive person has a 1.5-times
greater risk of developing severe COVID-19 than a healthy person.

We begin with data on the average risk of developing severe COVID-19 conditional
on infection by age and sex cohort in the UK; this is the setting in which the JunE model
was developed, and was therefore an already-available source of detailed COVID-19
data. Presumably, these risk estimates already take into account the comorbidities
which affect the relevant cohort in the UK. Therefore, we divide these average risk
estimates by an adjustment factor in order to ‘purge’ the UK statistic of specific
attributes relevant only to the UK population. The result is effectively a
comorbidity-free probability of developing severe COVID-19 conditional on age and sex.

Concretely, we calculate the comorbidity-free age- and sex—specific risk of infection
as:

PYE (severe | age, sex)

P(severe| age, sex) = \UK (age, sex)

9)

where PUX (severe | age, sex) is the probability of developing severe COVID-19 for a
given age and sex cohort in the UK as described above and AUX (age, sex) is the
UK-specific adjustment factor. The latter is defined as:

UK (age, sex) — NUK(E, age, sex) n NUE (age, sex) — NVE(g, age sex) <Z A\ (c, age, sex))

NUK (age, sex) > N(c, age, sex) NUK (age, sex)
(10)

where ¢ denotes individuals with no comorbidities; ¢ indexes comorbidities; A. is the

corresponding comorbidity multiplier from Table [1} NY5 (¢, age, sex) represents the

number of people in a given age and sex cohort that are afflicted by comorbidity ¢ in

the UK; and NVX (age, sex) represents the total number of people in the age and sex

cohort in the UK. The term in parentheses in Equation [10]is a weighted sum of




comorbidity multipliers, where the weights represent the fraction of the population with
each comorbidity in the UK. The prefactor that multiplies the term in parentheses is a
normalization term to ensure that the population fractions across all comorbidity
conditions and the no-comorbidity condition sum to 1. This is necessary because a
single individual may have multiple comorbidities, so the sum of empirically-observed
population fractions over all comorbidity conditions could be greater than one.

Since comorbidity prevalence rates are provided for each comorbidity separately, we
do not have data on how often particular comorbidities coincide. Therefore, we do not
know how many people have no comorbidities (¢). To calculate this number we follow
the general strategy outlined in Clark et al. [18]. First, we assume that comorbidities
are independently distributed, and calculate the expected proportion of people with one
or more comorbidities; we then scale this proportion by 0.9 to account for likely
correlations between comorbidities. Next, we confirm that the estimated proportion of
people with one or more comorbidities is greater than the proportion of people with
each single comorbidity; otherwise, we set the estimated proportion of people with one
or more comorbidities equal to the proportion of people with the most common
comorbidity. Subtracting this number from 1, we obtain the estimated proportion of
people with no comorbidities. That is,

NUEK (¢, age, sex) NUEK (¢, age, sex)
09 (1 — 1 - > 986, , > 988,
( 11 ( NUE (age, sex) > mf“( NUK (age, sex) )

c

NUK(E, age, sex)

= ]_ —_
NUK (age, sex) e

We next attach a calculated age-, sex- and comorbidity-specific risk of severe
infection to each agent in the model. The distribution of age and sex in the population
is derived from settlement statistics, whereas the distribution of comorbidities is drawn
from the age- and sex-specific comorbidity prevalence in Myanmar as estimated by the
2017 Global Burden of Disease (GBD) study and tabulated in Clark et al. [20L[21].
While there are active efforts to track illness in the camps, these efforts are oriented
towards communicable disease and did not provide sufficient data to estimate the
prevalence of the diseases in Table [1} therefore, we have used the population of
Myanmar as the reference population for comorbidity prevalence estimates. We note
that a national level characterization could be biased, however, there is currently a lack
of available data at the relevant demographic scale. People living in remote locations
with various predisposing risk factors may not be able to be generalized at the national
level and vice versa. The use of comorbidity data is only used in our model to adjust
the likelihood of disease progression, and therefore the chance that someone may be
hospitalised. Since we take the approach of assessing the relative efficacies of
operational interventions, these uncertainties will often be sub-dominant, however, in
the event of any precise predictions these uncertainties should be clearly stated.

For each sampled individual, we calculate the risk of severe disease by adjusting the
comorbidity-free risk estimate by the multiplier from Table [I] that is specific to the
individual’s assigned comorbidity:

P(severe|c, age, sex) = A, P(severe | age, sex) (11)
This probability of severe infection can then be used to simulate the trajectory of each

individual’s illness, if infected.

Data Visualisation Tool

Our dashboard is built independently of the main simulation code and relies on a
detailed data structure collected from an experiment (batch of simulations). Many
things can happen to an agent in a single simulation. For example, at any time point an




agent can get infected, change locations, infect another, become hospitalized, die, or
recover. Each of these ‘events’ can be reduced into a useful statistic (e.g., the number of
infected each day or the locations where each agent got infected per day) and stored as
a column of a CSV that is eventually consumed by the dashboard along with a
metadata file describing the hyperparameters of each run. The dashboard is built with
VuelJS. All logic for processing the CSV files and displaying them to the user for
interaction lives within the Typescript code. Snippets of primary dashboard
functionality are shown in Figs []

Click parameter name to compare all options
Parameter Name ~ Options
learning_centers true false
household_beta |0.20

indoor_beta 0.45 0.55 0.65 300K learning_centers=false
— i e iead learning centers=true

outdoor_beta 0.05 0.10 0.15

N
2

200K

Select field:[currently_infected v
Select regional____ v]

150K

100K /\

Fig 4. An example from the dashboard showing the infection curves (right) when
learning centers are open (orange curve) or closed (blue curve) assuming
specified interaction intensities. This graphic answers the question: “How can
we expect infection rates to evolve if we open learning centers, assuming people
follow mask and social distancing rules such that the indoor infection rate
(“indoor_beta”) and outdoor infection rate (“outdoor_beta”) are low?” Different
simulations with different interaction intensities can be selected by clicking
different cells in the parameter grid (left). Select the name of a parameter (e.g.,
“learning_centers”, “indoor_beta”) to compare the selected field across all
different values of that parameter while the other parameters remain constant.
Note that the “beta” values are defined as in Equation [f] and all values are
relative to the “household_beta” in this paper (see 77).

Number of People

£

The many facets presented by the dashboard assist the discovery of rich insights
from the information-dense simulations. In addition to several of the plots shown
throughout Section 7?7, the dashboard allows users to zoom in to simulation results
across different parameters for specifics (Fig[5)) and zoom out for overviews and easier
exploration (Fig[4). It can also show how different interventions vary by geography.
How do the initial locations of infections impact the eventual geographical distribution
of infections or deaths? How does medical infrastructure play a role in hospitalisation
trends? The dashboard plots these trends on top of a regional choropleth map for every
simulation and an interactively selected time step.
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Run 2 Run?

Parameter Name ~Options Parameter Name Options
learning_centers true false learning centers true false
household_beta 0.20
indoor_beta
outdoor_beta

household_beta 0.20
indoor_beta
outdoor_beta

Locations of Infection

10K

Number of People
Number of People

Select field: currently_infected _v| Select field: [currently_infected v
Ages Affected Ages Affected
Fig 5. Direct comparison of two different simulations with learning centers open and
closed. Displayed plots show distribution of where infections occurred each day
(note that infections due to learning centers occur only on weekdays when
learning centers are open). Scrolling up or down on this view shows additional
comparison plots such as the SIR curve, ages affected, and geographical spread.
Select a different run for each column by clicking around the parameter grid
(top).
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