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1) Training Modes for OutbreakFlow (Algorithms S1-S3)

Offline Learning

Algorithm S1 OutbreakFlow training phase using offline learning

Require: f - invertible inference network, h - recurrent summary network, g - convolutional
filtering network, φ - neural network parameters, S - total number of simulations, B - number
of simulations per batch (batch size).

1: Generate a large reference table D(S) := {θ(s), x(s)1:T )}Ss=1 by running the simulator S times.
2: repeat
3: Sample a mini-batch of simulations: D(B) ∼ D(S).

4: Pass each simulated time-series through the filtering network: x̃
(b)
1:T = g(x

(b)
1:T ).

5: Pass the filtered time-series through the summary network: y(b) = h(x̃1:T ).
6: Pass each pair (θ(b), y(b)) through the inference network: z(b) = f(θ(b), y(b)).

7: Compute loss from batch: L(φ) = −
∑B
b=1 log qφ(θ(b) |x(b)1:T ).

8: Update neural network parameters φ via backpropagation.
9: until convergence to φ∗

10: Return trained networks g, h, f with parameters φ∗.
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Online Learning

Algorithm S2 OutbreakFlow training phase using online learning

Require: f - invertible inference network, h - recurrent summary network, g - convolutional
filtering network, φ - neural network parameters, B - number of simulations per iteration
(batch size).

1: repeat

2: Generate a mini-batch D(B) := {θ(b), x(b)1:T )}Bb=1 by running the simulator B times.

3: Pass each simulated time-series through the filtering network: x̃
(b)
1:T = g(x

(b)
1:T ).

4: Pass the filtered time-series through the summary network: y(b) = h(x̃1:T ).
5: Pass each pair (θ(b), y(b)) through the inference network: z(b) = f(θ(b), y(b)).

6: Compute loss from batch: L(φ) = −
∑B
b=1 log qφ(θ(b) |x(b)1:T ).

7: Update neural network parameters φ via backpropagation.
8: until convergence to φ∗

9: Return trained networks g, h, f with parameters φ∗.

Round-Based Learning

Algorithm S3 OutbreakFlow training phase using round-based hybrid learning

Require: f - invertible inference network, h - recurrent summary network, g - convolutional
filtering network, φ - neural network parameters, R - number of rounds, S - number of
simulations per round, B - batch size.

1: Initialize reference table D(R×S) := {}.
2: for r = 1, ..., R do

3: Generate synthetic data D(S)
r := {θ(s), x(s)1:T )}Ss=1 by running the simulator S times.

4: Aggregate data: D(R×S) := D(R×S) ∪ D(S)
r .

5: repeat
6: Sample a mini-batch of simulations: D(B) ∼ D(R×S).

7: Pass each simulated time-series through the filtering network: x̃
(b)
1:T = g(x

(b)
1:T ).

8: Pass the filtered time-series through the summary network: y(b) = h(x̃1:T ).
9: Pass each pair (θ(b), y(b)) through the inference network: z(b) = f(θ(b), y(b)).

10: Compute loss from batch: L(φr) = −
∑B
b=1 log qφr (θ(b) |x(b)1:T ).

11: Update neural network parameters φ via backpropagation.
12: until convergence to φ∗r
13: end for
14: Return trained networks g, h, f with parameters φ∗R.
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2) Parameter Priors for the Model of the Early Covid-19

Pandemics in Germany (Tables S1-S3)

Disease Model

Table S1. Description of disease model parameters and corresponding prior distributions

Parameter Symbol Prior Distribution

Number of initially exposed individuals E0 Gamma(2, 30)
Risk of infection from symptomatic patients β LogNormal(log(0.25), 0.3)
Rate at which exposed cases become infectious γ LogNormal(log(1/6.5), 0.5)
Rate at which symptoms manifest η LogNormal(log(1/3.2), 0.5)
Rate at which symptomatic individuals recover µ LogNormal(log(1/8), 0.2)
Rate at which undiagnosed individuals recover θ Uniform(1/14, 1/3)
Rate at which critical cases die d Uniform(1/14, 1/3)
Probability of remaining undetected/undiagnosed α Uniform(0.005, 0.99)
Probability of dying from the disease δ Uniform(0.01, 0.3)

Intervention Model

Table S2. Description of intervention model parameters controlling the time-varying transmission
rate

Parameter Symbol Prior Distribution

Onset date of each change to take effect t1 Normal(2020/03/09 = Day 8, 3)
t2 Normal(2020/03/16 = Day 15, 3)
t3 Normal(2020/03/23 = Day 22, 3)
t4 Normal(2020/05/06 = Day 66, 3)

Duration of each change to fully manifest itself ∆tj LogNormal(log(3), 0.3)
Transmission rates before / after each change λ0 LogNormal(log(1.2), 0.5)

λ1 LogNormal(log(0.6), 0.5)
λ2 LogNormal(log(0.3), 0.5)
λ3 LogNormal(log(0.1), 0.5)
λ4 LogNormal(log(0.15), 0.5)

Observation Model

Table S3. Description of observation model parameters controlling reporting properties

Parameter Symbol Prior Distribution

Reporting delays (lags) LC∈{I,R,D} LogNormal(log(8), 0.2)
Weekly modulation amplitudes AC∈{I,R,D} Beta(0.7, 0.17)
Weekly modulation phases ΦC∈{I,R,D} VonMises(0.01)
Reporting noise scale σC∈{I,R,D} Gamma(1, 5)

October 9, 2021 3/31



3) Testing and Validation of OutbreakFlow (Table S4, Fig-

ures S1-S3)

Parameter Priors

Table S4. Description of model parameters and corresponding prior distributions

Parameter Symbol Prior Distribution

Initial transmission rate λ LogNormal(log(0.4), 0.5)
Recovery rate of infected individuals µ LogNormal(log(1/8), 0.2)
Reporting delay (lag) L LogNormal(log(8), 0.2)
Number of initially infected individuals I0 Gamma(2, 20)
Dispersion of the negative binomial distribution ψ Exponential(5)

Results with Uninformative Parameters

Fig S1. Posterior predictions on new cases from the first 2 weeks of the Covid-19 pandemics in
Germany. We observe accurate reproduction of the real data and well-calibrated uncertainty
despite the addition of uninformative parameters.

Fig S2. Simulation-based probabilistic calibration of the marginal approximate posteriors
obtained by the network trained to estimate the simple SIR-model. The addition of uninformative
parameters does not seem to induce systematic biases across the marginal posteriors.
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Fig S3. Bivariate and univariate posteriors obtained by applying the simple SIR model (Eq.
16-18) to cases reported in the first 2 weeks of the Covid-19 pandemic in Germany. The addition
of uninformative parameters does not lead to results which diverge from or lead to different
conclusions from the main analysis (see Fig 3). Dashed black lines on the diagonal indicate
posterior means.
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4) Periodic SIR Model (Table S5, Figures S4-S5)

In addition to the analyses in the main paper, we explored the behavior of OutbreakFlow on a

noisy periodic SIR model with potentially chaotic behavior. Following [1], the model is defined

by the following set of ordinary differential equations (ODEs):

dS

dt
= −β(t)

(
S I

N

)
+ µN − µS (S1)

dI

dt
= β(t)

(
S I

N

)
− (γ + µ) I (S2)

dR

dt
= γ I − µR (S3)

The model assumes that at time t, the population is composed of S susceptible, I infected,

and R removed (recovered or immune) individuals. Vital dynamics are taken into account by

considering a natural mortality rate per capita µ > 0 and a number µN of births per time unit,

where N is the total population size. Since we assume that the disease is non-lethal, the size of

the population is constant N = S + I +R. We further assume a transmission rate β(t) which is

a periodic function of time with a fixed period T . Infected individuals recover at a rate γ > 0.

The transmission rate β(t) varies as a function of time according to:

β(t) = β0(1 + ε cos (2πωt)) (S4)

Further, we assume the following observation model for the observed new infections Iobs:

I
(obs)
t ∼ Normal(It,

√
Itσ), (S5)

Thus, the full parameter vector to be estimated is θ = (β0, µ, γ, ε, ω, σ). Prior distributions for

the parameters are given in the below table.

Table S5. Description of model parameters and corresponding prior distributions

Parameter Symbol Prior Distribution

Base transmission rate β0 Uniform(1, 3)
Natural mortality rate µ Uniform(1/14, 1/3)
Recovery rate γ Uniform(1/13, 1/3)
Seasonal modulation amplitude ε Uniform(1/10, 1)
Seasonal modulation frequency ω Uniform(0.9, 10)
Noise factor of the observation model σ Exponential(5)

In order to calibration, estimation, and predictions, we train the OutbreakFlow networks via

online learning for a total of 50000 mini-batch simulations from the model.
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Fig S4. Simulation-based probabilistic calibration of the marginal approximate posteriors
obtained by OutbreakFlow trained on the seasonal SIR model. The results indicate poor
calibration, since notable deviations from uniformity are present, revealing systematic parameter
recovery and uncertainty quantification deficiencies.
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Fig S5. Model-based predictions on 16 simulated time-series from the periodic SIR model.
Despite poor calibration, the network is able to encode the periodic structure of the data well
and appears to capture the average dynamics.
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5) Simulation-Based Calibration of OutbreakFlow for Infer-

ence on Entire Germany (Figure S6)

Fig S6. Simulation-based probabilistic calibration of the marginal approximate posteriors ob-
tained by the network trained for inference on entire Germany. Uniformly distributed histograms
of the rank statistic indicate no systematic biases in the estimation of location and scale of the
true marginal posteriors.
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6) Ablation Study Results (Figures S7-S12)

6.1) Removing the Convolutional Filtering Network

Fig S7. Simulation-based probabilistic calibration of the marginal approximate posteriors
obtained by OutbreakFlow without a convolutional filtering network. Uniformly distributed
histograms of the rank statistic indicate no systematic biases in the estimation of location and
scale of the true marginal posteriors. We observe slightly worse calibration, especially regarding
the observation model parameters, when using this reduced architecture.

Fig S8. Posterior predictions and forecasts of new cases based on the same data as in the main
text but using an OutbreakFlow architecture without a convolutional filtering network. We
observe that this reduced architecture has difficulties recovering the weekly modulation. Cases
to the left of the vertical dashed line were used for posterior checking (model training) and cases
to the right for posterior forecasts (predictions) on unseen data.
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6.2) Removing the Recurrent Summary Network

Fig S9. Simulation-based probabilistic calibration of the marginal approximate posteriors
obtained by OutbreakFlow without a recurrent summary network. Uniformly distributed
histograms of the rank statistic indicate no systematic biases in the estimation of location and
scale of the true marginal posteriors. We observe slightly worse calibration, especially regarding
the observation model parameters, when using this reduced architecture.

Fig S10. Posterior predictions and forecasts of new cases based on the same data as in the
main text but using an OutbreakFlow architecture without a recurrent summary network. We
observe that this reduced architecture has difficulties recovering the weekly modulation. Cases
to the left of the vertical dashed line were used for posterior checking (model training) and cases
to the right for posterior forecasts (predictions) on unseen data.

6.3) Removing the Observation Model

Inference on the observed epidemiological time series yielded only divergent simulations.

6.4) Removing the Intervention Model

Inference on the observed epidemiological time series yielded only divergent simulations.
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6.5) Removing the Latent Carrier Compartment

Fig S11. Simulation-based probabilistic calibration of the marginal approximate posteriors
obtained by OutbreakFlow on a SEIRD model (lacking a latent carrier compartment). Uniformly
distributed histograms of the rank statistic indicate no systematic biases in the estimation
of location and scale of the true marginal posteriors. We observe slightly worse calibration,
especially regarding the observation model parameters, when using this reduced model.

October 9, 2021 12/31



Fig S12. Posterior predictions and forecasts of new cases based on the same data as in the
main text but using an OutbreakFlow architecture trained on a reduced SEIRD model (lacking
a latent carrier compartment). We observe that this reduced model does not reproduce the data
well and largely underestimates the reported cases, especially during the beginning and peak of
the pandemic wave. Note: Cases to the left of the vertical dashed line were used for posterior
checking (model training) and cases to the right for posterior forecasts (predictions) on unseen
data.

7) Simulation-Based Calibration of OutbreakFlow for Infer-

ence on the Individual German States (Figure S13)

Fig S13. Simulation-based probabilistic calibration of the marginal approximate posteriors
obtained by the networks trained for amortized inference on all German federal states. Uniformly
distributed histograms of the rank statistic indicate no systematic biases in the estimation of
location and scale of the true marginal posteriors.
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8) Predicted New Cases per German Federal State (Figure

S14)

Fig S14. Model predictions of new cases Covid-19 deaths for each German federal state. Cases
to the left of the vertical dashed line (8 weeks) were used for model fitting and posterior checking
and cases to the right (3 weeks) for forecasts on new data. We observe good matches between the
model’s median predictions and past and future reported cases for each German federal state.
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9) Predicted Cumulative Deaths per German Federal State

(Figure S15)

Fig S15. Model predictions of cumulative Covid-19 deaths (derived from predicted new cases)
for each German federal state. Cases to the left of the vertical dashed line (8 weeks) were used
for model fitting and posterior checking and cases to the right (3 weeks) for forecasts on new
data. We observe good matches between the model’s median predictions and past and future
reported deaths for each German federal state. However, the number of deaths in the state
Mecklenburg-Western Pomerania over time is underestimated (although it lies mostly within
the estimated 95%-CI), which is probably due to the very low counts (lowest among all German
federal states).
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10) Marginal Parameter Posteriors per Federal State (Fig-

ures S16-S31)

Baden-Württemberg

Fig S16. Marginal parameter posteriors from data available for the German federal state
Baden-Württemberg.
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Bavaria

Fig S17. Marginal parameter posteriors from data available for the German federal state
Bavaria.
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Berlin

Fig S18. Marginal parameter posteriors from data available for the German federal state Berlin.
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Brandenburg

Fig S19. Marginal parameter posteriors from data available for the German federal state
Brandenburg.
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Bremen

Fig S20. Marginal parameter posteriors from data available for the German federal state
Bremen.
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Hamburg

Fig S21. Marginal parameter posteriors from data available for the German federal state
Hamburg.
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Hesse

Fig S22. Marginal parameter posteriors from data available for the German federal state Hesse.
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Saxony

Fig S23. Marginal parameter posteriors from data available for the German federal state Lower
Saxony.
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Mecklenburg-Western Pomerania

Fig S24. Marginal parameter posteriors from data available for the German federal state
Mecklenburg-Western Pomerania.
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North Rhine-Westphalia

Fig S25. Marginal parameter posteriors from data available for the German federal state North
Rhine-Westphalia.
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Rhineland-Palatinate

Fig S26. Marginal parameter posteriors from data available for the German federal state
Rhineland-Palatinate.
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Saarland

Fig S27. Marginal parameter posteriors from data available for the German federal state
Saarland.
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Saxony-Anhalt

Fig S28. Marginal parameter posteriors from data available for the German federal state
Saxony-Anhalt.
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Saxony

Fig S29. Marginal parameter posteriors from data available for the German federal state
Saxony.
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Schleswig-Holstein

Fig S30. Marginal parameter posteriors from data available for the German federal state
Schleswig-Holstein.
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Thuringia

Fig S31. Marginal parameter posteriors from data available for the German federal state
Thuringia.
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