Nothing Special   »   [go: up one dir, main page]

Recovery of H14 influenza A virus isolates from sea ducks in the Western Hemisphere

In 2010, H14 influenza A viruses were recovered from clinically normal sea ducks in the United States. These are the first H14 isolates recovered in the Western Hemisphere and represent the only documented H14 influenza A viruses isolated since the original isolates were recovered from near the Caspian Sea during 1982.

Influenza activity in Saint Joseph, Missouri 1910-1923: Evidence for an early wave of the 1918 pandemic

While the 1918/1919 H1N1 influenza pandemic is widely recognized as a “worst-case scenario” for the emergence of a new influenza strain, relatively little is known about the origin of the responsible virus and its pattern of spread. Most studies of this virus in the United States rely on temporally and spatially aggregated data. Location-specific studies of the impact of the 1918 pandemic strain in the United States have been confined primarily to large cities on the East Coast or West Coast. In this study, data on pneumonia and influenza fatalities from 1910-1923 have been extracted from death certificates for Saint Joseph, Missouri, a typical mid-sized city in the central United States. An increase in pneumonia and influenza mortality was noted starting in the 1915/1916 influenza season. Initially, increased mortality was observed in infants and the elderly. In February 1918, an age-shift typical of pandemic strains of virus was seen, as the burden of mortality shifted to young adults, a characteristic of the 1918 pandemic virus. These results provide one of the first confirmations of the existence of a “herald wave” of influenza activity in the United States prior to the recognized start of the H1N1 pandemic in Spring 1918. This study is one of very few that measures the impact of 1918/1919 influenza in a particular location in the central United States.

Swine to human transmission of reassortants of pandemic (H1N1) 2009 and endemic swine influenza viruses

To gain insight into the possible origin of a new reassortant influenza A virus between pandemic (H1N1) 2009 and endemic swine viruses that has jumped the species barrier and caused a few infections among humans in Indiana and Pennsylvania recently, we analyzed all full genome sequences related to this virus and report its evolutionary history, but failed to determine how the virus had emerged simultaneously in two geographically distinct areas.

Prevalence of antibodies against seasonal influenza A and B viruses during the 2009-2010 and 2010-2011 influenza seasons in residents of Pittsburgh, PA, USA.

Seroprevalence of antibodies against influenza viruses from 1000 people between the ages of 0 to 90 years of age (100 samples for each decade of life) in the Pittsburgh, PA, USA was measured. One year removed from the outbreak of novel H1N1 influenza into the human population in the Northern Hemisphere and following the emergence of a new H3N2 influenza isolate, sera was collected to determine the hemagglutination-inhibition antibodies against influenza A/H1N1, A/H3N2, and B viruses representative of viruses in the vaccine used for the 2010-2011 influenza season. The seroprevalence of antibodies to influenza virus, A/California/7/2009 (H1N1), increased from the previously reported November 2009 samples and the samples collected at the end of the 2010 influenza season (June 2010) during the 2010-2011 season in all age groups, but people the under the age of 20 had the highest rise in the number of positive samples. The number of individuals positive for H1N1 stayed the same through the entire influenza season. In contrast, there were little to no positive serum samples against the H3N2 virus, A/Perth/16/2009, from samples collected during the 2009-2010 influenza season, however, titers against these viruses rose significantly during the early months of the 2010-2011 season with the highest number of positive samples detected in the very young and very old populations. However, these titers waned by May, 2011 in those over the age of 40. There was a rise in adults to the B/Brisbane/60/2008 influenza virus in adults in samples collected in October, 2010, but these titers quickly declined. The highest titers to B influenza were detected in people between the ages of 10-30 years of age. These findings may have implications for the development of vaccination strategies aiming at the protection against seasonal and/or pandemic influenza virus infection and pre-pandemic preparedness activities.