Literatur
Shubhendu, S., & Vijay, J. F. (2013). Applicability of artificial intelligence in different fields of life. International Journal of Scientific Engineering and Research, 1(1), 28–35.
Wangoo, D. P. (2018). Artificial intelligence techniques in software engineering for automated software reuse and design. 2018 4th International Conference on Computing Communication and Automation (ICCCA). (S. 1–4). https://doi.org/10.1109/CCAA.2018.8777584.
Abbott, R. J. (1983). Program Design by Informal English Descriptions. Communications of the ACM, 26(11), 882–894. https://doi.org/10.1145/182.358441.
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2017). Natural language processing: state of the art, current trends and challenges. http://arxiv.org/abs/1708.05148. Zugegriffen: 3. Jan. 2020.
Yalla, P., & Sharma, N. (2015). Integrating natural language processing and software engineering. International Journal of Software Engineering and Its Applications, 9, 127–136.
Palomares, C., Franch, X., & Fucci, D. (2018). Personal recommendations in requirements engineering: the openreq approach. In E. Kamsties & F. Dalpiaz (Hrsg.), International working conference on requirements engineering: foundation for software quality. Lecture Notes in Computer Science, (Bd. 10753, S. 297–304). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-319-77243-1_19.
Ambreen, T., Ikram, N., Usman, M., & Niazi, M. (2016). Empirical research in requirements engineering: trends and opportunities. Requirements Engineering, 23(1), 63–95.
Horkoff, J., Aydemir, F. B., Cardoso, E., Li, T., Maté, A., Paja, E., Piras, L., et al. (2019). Goal-oriented requirements engineering: an extended systematic mapping study. Requirements Engineering, 24(2), 133–160.
Bosch, J., Olsson, H., & Crnkovic, I. (2018). It takes three to tango: Requirement, outcome/data, and AI driven. In University of Tartu Institute of Computer Science Software Engineering and Information Systems Group & Association for Computing Machinery (Hrsg.), International Workshop on Software-Intensive Business: Start-Ups, Ecosystems and Platforms (S. 177–192). New York: Association for Computing Machinery.
Sharma, S., & Pandey, S. (2013). Integrating AI techniques in requirements phase: a literature review. International Journal of Computer Applications, 5(11), 21–25.
Aldekhail, M., & Ziani, D. (2017). Intelligent method for software requirement conflicts identification and removal: proposed framework and analysis. International Journal of Computer Science and Network Security, 17(12), 91–95.
Hooda, I., & Chhillar, R. (2015). Software test process, testing types and techniques. International Journal of Computer Applications, 111(13), 10–14.
Santiago, D., King, T., & Clarke, P. (2018). AI-Driven Test Generation: Machines Learning from Human Testers. In Pacific Northwest Software Quality Conference (ed.). Proceedings of the 36th Pacific NW Software Quality Conference. Portland: Pacific Northwest Software Quality Conference. https://www.pnsqc.org/wp-content/uploads/2018/09/38-Santiago-AI-Driven-Test-Generation.pdf. Zugegriffen: 3. Jan. 2020.
Hanna, M., Aboutabl, A., & Mostafa, M. (2018). Automated Software Testing Framework for Web Applications. Automated Software Testing Framework for Web Applications, 13(11), 9758–9767.
Gamido, H., & Gamido, M. (2019). Comparative review of the features of automated software testing tools. International Journal of Electrical and Computer Engineering, 9(5), 4473–4478.
Korzeniowski, L., & Goczyla, K. (2019). Artificial intelligence for software development—the present and the challenges for the future. Bulletyn WAT, 66(1), 15–32.
Imam, A., Alnsour, A., & Al-Hroob, A. (2015). The definition of intelligent computer aided software engineering (I-CASE) tools. Journal of Information Engineering and Applications, 5(1), 47–56.
Rosales-Morales, V., Alor-Hernandez, G., Garcia-Alcaraz, J., Zatarian-Cabada, R., & Barron-Estrada, M. (2015). An analysis of tools for automatic software development and automatic code generation. Revista Facultad de Ingeniería, Universidad de Antioquia, 77, 75–87.
Sestili, C., Snavely, W., & Van Houdnos, N. (2018). Towards security defect prediction with AI. https://arxiv.org/pdf/1808.09897.pdf. Zugegriffen: 3. Jan. 2020.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barenkamp, M. Künstliche Intelligenz in der Softwareentwicklung. Wirtsch Inform Manag 12, 120–129 (2020). https://doi.org/10.1365/s35764-020-00235-5
Published:
Issue Date:
DOI: https://doi.org/10.1365/s35764-020-00235-5