Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Künstliche Intelligenz in der Softwareentwicklung

  • Schwerpunkt
  • Published:
Wirtschaftsinformatik & Management Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Shubhendu, S., & Vijay, J. F. (2013). Applicability of artificial intelligence in different fields of life. International Journal of Scientific Engineering and Research, 1(1), 28–35.

    Google Scholar 

  2. Wangoo, D. P. (2018). Artificial intelligence techniques in software engineering for automated software reuse and design. 2018 4th International Conference on Computing Communication and Automation (ICCCA). (S. 1–4). https://doi.org/10.1109/CCAA.2018.8777584.

    Book  Google Scholar 

  3. Abbott, R. J. (1983). Program Design by Informal English Descriptions. Communications of the ACM, 26(11), 882–894. https://doi.org/10.1145/182.358441.

    Article  Google Scholar 

  4. Khurana, D., Koli, A., Khatter, K., & Singh, S. (2017). Natural language processing: state of the art, current trends and challenges. http://arxiv.org/abs/1708.05148. Zugegriffen: 3. Jan. 2020.

  5. Yalla, P., & Sharma, N. (2015). Integrating natural language processing and software engineering. International Journal of Software Engineering and Its Applications, 9, 127–136.

    Article  Google Scholar 

  6. Palomares, C., Franch, X., & Fucci, D. (2018). Personal recommendations in requirements engineering: the openreq approach. In E. Kamsties & F. Dalpiaz (Hrsg.), International working conference on requirements engineering: foundation for software quality. Lecture Notes in Computer Science, (Bd. 10753, S. 297–304). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-319-77243-1_19.

    Chapter  Google Scholar 

  7. Ambreen, T., Ikram, N., Usman, M., & Niazi, M. (2016). Empirical research in requirements engineering: trends and opportunities. Requirements Engineering, 23(1), 63–95.

    Article  Google Scholar 

  8. Horkoff, J., Aydemir, F. B., Cardoso, E., Li, T., Maté, A., Paja, E., Piras, L., et al. (2019). Goal-oriented requirements engineering: an extended systematic mapping study. Requirements Engineering, 24(2), 133–160.

    Article  Google Scholar 

  9. Bosch, J., Olsson, H., & Crnkovic, I. (2018). It takes three to tango: Requirement, outcome/data, and AI driven. In University of Tartu Institute of Computer Science Software Engineering and Information Systems Group & Association for Computing Machinery (Hrsg.), International Workshop on Software-Intensive Business: Start-Ups, Ecosystems and Platforms (S. 177–192). New York: Association for Computing Machinery.

    Google Scholar 

  10. Sharma, S., & Pandey, S. (2013). Integrating AI techniques in requirements phase: a literature review. International Journal of Computer Applications, 5(11), 21–25.

    Google Scholar 

  11. Aldekhail, M., & Ziani, D. (2017). Intelligent method for software requirement conflicts identification and removal: proposed framework and analysis. International Journal of Computer Science and Network Security, 17(12), 91–95.

    Google Scholar 

  12. Hooda, I., & Chhillar, R. (2015). Software test process, testing types and techniques. International Journal of Computer Applications, 111(13), 10–14.

    Article  Google Scholar 

  13. Santiago, D., King, T., & Clarke, P. (2018). AI-Driven Test Generation: Machines Learning from Human Testers. In Pacific Northwest Software Quality Conference (ed.). Proceedings of the 36th Pacific NW Software Quality Conference. Portland: Pacific Northwest Software Quality Conference. https://www.pnsqc.org/wp-content/uploads/2018/09/38-Santiago-AI-Driven-Test-Generation.pdf. Zugegriffen: 3. Jan. 2020.

  14. Hanna, M., Aboutabl, A., & Mostafa, M. (2018). Automated Software Testing Framework for Web Applications. Automated Software Testing Framework for Web Applications, 13(11), 9758–9767.

    Google Scholar 

  15. Gamido, H., & Gamido, M. (2019). Comparative review of the features of automated software testing tools. International Journal of Electrical and Computer Engineering, 9(5), 4473–4478.

    Google Scholar 

  16. Korzeniowski, L., & Goczyla, K. (2019). Artificial intelligence for software development—the present and the challenges for the future. Bulletyn WAT, 66(1), 15–32.

    Article  Google Scholar 

  17. Imam, A., Alnsour, A., & Al-Hroob, A. (2015). The definition of intelligent computer aided software engineering (I-CASE) tools. Journal of Information Engineering and Applications, 5(1), 47–56.

    Google Scholar 

  18. Rosales-Morales, V., Alor-Hernandez, G., Garcia-Alcaraz, J., Zatarian-Cabada, R., & Barron-Estrada, M. (2015). An analysis of tools for automatic software development and automatic code generation. Revista Facultad de Ingeniería, Universidad de Antioquia, 77, 75–87.

    Google Scholar 

  19. Sestili, C., Snavely, W., & Van Houdnos, N. (2018). Towards security defect prediction with AI. https://arxiv.org/pdf/1808.09897.pdf. Zugegriffen: 3. Jan. 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Barenkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barenkamp, M. Künstliche Intelligenz in der Softwareentwicklung. Wirtsch Inform Manag 12, 120–129 (2020). https://doi.org/10.1365/s35764-020-00235-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s35764-020-00235-5

Navigation