Abstract
This paper focuses on converged access/metro infrastructures for 5G services, proposing a common transport network integrating wireless and optical network segments with compute/storage domains. To identify the optimal mix of transport network technologies (optical/wireless) and processing modules that are required to support 5G services in a cost- and energy-efficient manner, a two-stage optimization framework is proposed. In the first stage, a multi-objective optimization scheme, focusing on the transport network segment, tries to jointly minimize the capital expenditure of the converged 5G network. This is performed through the identification of the optimal mix of wireless and optical transport network technologies. The second stage focuses on the compute network segment and aims at identifying suitable processing modules to which operational 5G services need to be allocated. The performance of the proposed approach is examined using realistic traffic statistics for various network technology choices including mmWave and passive optical networks (PONs) for transport, fixed, and elastic grid optical networks across a city-wide topology in Bristol, UK.
© 2018 Optical Society of America
Full Article | PDF ArticleMore Like This
Konstantinos N. Georgakilas, Anna Tzanakaki, Markos Anastasopoulos, and Jens Myrup Pedersen
J. Opt. Commun. Netw. 4(9) 681-691 (2012)
Paola Iovanna, Fabio Cavaliere, Francesco Testa, Stefano Stracca, Giulio Bottari, Filippo Ponzini, Alberto Bianchi, and Roberto Sabella
J. Opt. Commun. Netw. 8(12) B80-B92 (2016)
Bijan Rahimzadeh Rofoee, Georgios Zervas, Yan Yan, Markos Anastasopoulos, Anna Tzanakaki, Shuping Peng, Reza Nejabati, and Dimitra Simeonidou
J. Opt. Commun. Netw. 7(3) A526-A536 (2015)