计算机科学 ›› 2020, Vol. 47 ›› Issue (1): 170-175.doi: 10.11896/jsjkx.181202337
张显,叶军
ZHANG Xian,YE Jun
摘要: 高光谱图像(Hyperspectral Images,HSI)在采集过程中常受到多种类型的噪声干扰,会直接影响其在后续应用中的精度,因此HSI的去噪是一项十分重要的预处理过程。低秩表示(Low-Rank Representation,LRR)模型能很好地满足HSI的光谱性质,但该框架下字典的选择尤为重要,在当下仍是一个开放性的问题。同时,典型去噪方法仅考虑了图像的局部相关性,已不能满足去噪要求,非局部相似性在图像中也是不可忽略的。基于LRR,文中提出了一种新的HSI去噪算法。首先,综合考虑噪声的类型,选取具有更全面的噪声判别能力的字典;其次,在对图像分块处理的前提下,通过聚类的方式引入非局部相似信息,将相似的图像块联合起来进行低秩表示。在模拟Indian Pines数据集以及EO-1 Hyperion真实数据集上的实验结果均表明,相较于目前主流的HSI去噪方法,无论是在图像的目视效果还是在模拟数据集的定量评价指标下,所提方法均有显著提升。
中图分类号:
[1]LV F,HAN M,QIU T.Remote sensing image classification based on ensemble extreme learing machine with stacked autoencode[J].IEEE Access,2017,5:9021-9031. [2]LIU H C,LI S T,FANG L Y.Robust object tracking based on principal component analysis and local sparse resentation[J].IEEE Transactions on Instrumentaition & Measurement,2015,64(11):2863-2875. [3]BO C,LU H C,WANG D.Weighted generalized nearest neighbor for hyperspectral image classification[J].IEEE Access,2017,5:1496-1509. [4]YANG W,HOU K,LIU B,et al.Two-stage clustering tech- nique based on the neighboring union histogram for hyperspectral remote sensing images[J].IEEE Access,2017,5:5640-5647. [5]WEN Y W,MICHAEL K,HUANG Y M.Efficient total variation minimization methords for color image restoration[J].IEEE Transactions on Image Processing,2008,17(11):2081-2088. [6]DABOV K,FOI A,KATKOVNIK V,et al.Image denosing by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. [7]KOPSINIS Y,MCLAUGHLIN S.Development of EMD-based denoising methods inspired by wavelet thresholding[J].IEEE Transactions on Signal Processing,2009,57(4):1351-1362. [8]ZHANG H Y.Hyperspectral image denoising with cubic total variation model[J].ISPRS Annals of Photogrammetry,Remote Sen-sing and Spatial Information Sciences,2012,1(7):95-98. [9]YUAN Q Q,ZHANG L P,SHEN H F.Hyperspectral image denoising employing a spectral-spatial adaptive total variation model[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3660-3677. [10]DABOV K,FOI A,EGIAZARIAN K.Video denoising by sparse 3D transform-domain collaborative filtering[C]∥15th European Signal Processing Conference.Poznan,Poland,2007:145-149. [11]LIN T,BOURENNANE S.Survey of hyperspectralimage de- noising methods based on tensor decompositions[J].Eurasip Journal on Advances in Sibnal Processing,2013,2013(1):1-11. [12]ZHAO Y Q,YANG J X.Hyperspectral image denoising via sparse representation and low-rank constraint[J].IEEE Transactions on Geoscience and Remote Sensing,2014,53(1):296-308. [13]CHANG Y,YAN L,ZHONG S.Hyperspectral image denoising via spectral and spatial low-rank approximation[C]∥IEEE International Geoscience and Remote Sensing Symposium,Fort Worth,USA:IEEE,2017:4193-4195. [14]HE W,ZAHNG H Y,SHEN H F,et al.Hyperspectral image denoising using local low-rank matrix recovery and global spa- tial-spectral total variation[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2018,11(3):713-729. [15]CANDES E J,LI X D,MA Y,et al.Robust principal component analysis?[J].Journal of the ACM,2011,58(3):1-37. [16]ZHANG H,HE W,ZHANG L P,et al.Hyperspectral image restoration using low-rank matrix recovery[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):4729-4743. [17]LIU G C,LIN Z C,YAN S C,et al.Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Inteligence,2013,35(1):171-184. [18]WANG M D,YU J,XUE J H,et al.Denoising of hyperspectral images using group low-rank representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(9):4420-4427. [19]ZHOU T Y,TAO D C.GoDec:Randomized low-rank & sparse matrix decomposition in noisy case[C]∥Proceedings of the 28th International Conference on Machine Learning.WA,USA,2011:33-40. [20]HUANG Z H,LI S T,FANG L Y,et al.Hyperspectral image denoising with group sparse and low-rank tensor decomposition[J].IEEE Access,2017,6:1380-1390. [21]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. |
[1] | 郑建炜, 黄娟娟, 秦梦洁, 徐宏辉, 刘志. 基于非局部相似及加权截断核范数的高光谱图像去噪 Hyperspectral Image Denoising Based on Non-local Similarity and Weighted-truncated NuclearNorm 计算机科学, 2021, 48(9): 160-167. https://doi.org/10.11896/jsjkx.200600135 |
[2] | 陶星朋, 徐宏辉, 郑建炜, 陈婉君. 基于非凸低秩矩阵逼近和全变分正则化的高光谱图像去噪 Hyperspectral Image Denoising Based on Nonconvex Low Rank Matrix Approximation and TotalVariation Regularization 计算机科学, 2021, 48(8): 125-133. https://doi.org/10.11896/jsjkx.200400143 |
[3] | 巫勇, 刘永坚, 唐瑭, 王洪林, 郑建成. 基于鲁棒低秩张量恢复的高光谱图像去噪 Hyperspectral Image Denoising Based on Robust Low Rank Tensor Restoration 计算机科学, 2021, 48(11A): 303-307. https://doi.org/10.11896/jsjkx.210200103 |
[4] | 钟颖宇, 陈松灿. 高阶多视图离群点检测 High-order Multi-view Outlier Detection 计算机科学, 2020, 47(9): 99-104. https://doi.org/10.11896/jsjkx.200600170 |
[5] | 吴静, 周先春, 徐新菊, 黄金. 三维块匹配波域调和滤波图像去噪 Image Denoising by Mixing 3D Block Matching with Harmonic Filtering in Transform Domain 计算机科学, 2020, 47(7): 130-134. https://doi.org/10.11896/jsjkx.190600120 |
[6] | 王燕, 王丽. 面向高光谱图像分类的局部Gabor卷积神经网络 Local Gabor Convolutional Neural Network for Hyperspectral Image Classification 计算机科学, 2020, 47(6): 151-156. https://doi.org/10.11896/jsjkx.190500147 |
[7] | 罗月,童卞,景帅,张蒙,饶永明,闫峰. 基于卷积去噪自编码器的芯片表面弱缺陷检测方法 Detection Method of Chip Surface Weak Defect Based on Convolution Denoising Auto-encoders 计算机科学, 2020, 47(2): 118-125. https://doi.org/10.11896/jsjkx.190100141 |
[8] | 曹义亲, 谢舒慧. 基于网格搜索的特定类别图像去噪算法 Category-specific Image Denoising Algorithm Based on Grid Search 计算机科学, 2020, 47(11): 168-173. https://doi.org/10.11896/jsjkx.190900004 |
[9] | 李桂会,李晋江,范辉. 自适应匹配追踪图像去噪算法 Image Denoising Algorithm Based on Adaptive Matching Pursuit 计算机科学, 2020, 47(1): 176-185. https://doi.org/10.11896/jsjkx.181202280 |
[10] | 肖佳, 张俊华, 梅礼晔. 改进的三维块匹配去噪算法 Improved Block-matching 3D Denoising Algorithm 计算机科学, 2019, 46(6): 288-294. https://doi.org/10.11896/j.issn.1002-137X.2019.06.043 |
[11] | 刘佩, 贾建, 陈莉, 安影. 基于快速自适应的二维经验模态分解的图像去噪算法 Image Denoising Algorithm Based on Fast and Adaptive Bidimensional Empirical Mode Decomposition 计算机科学, 2019, 46(11): 260-266. https://doi.org/10.11896/jsjkx.190400159 |
[12] | 杜秀丽, 胡兴, 陈波, 邱少明. 基于加权非局部相似性的视频压缩感知多假设重构算法 Multi-hypothesis Reconstruction Algorithm of DCVS Based on Weighted Non-local Similarity 计算机科学, 2019, 46(1): 291-296. https://doi.org/10.11896/j.issn.1002-137X.2019.01.045 |
[13] | 张真真,王建林. 结合第二代Bandelet变换分块的字典学习图像去噪算法 Dictionary Learning Image Denoising Algorithm Combining Second Generation Bandelet Transform Block 计算机科学, 2018, 45(7): 264-270. https://doi.org/10.11896/j.issn.1002-137X.2018.07.046 |
[14] | 雷倩,郝存明,张伟平. 基于超分辨率和深度神经网络的车型识别 Vehicle Recognition Based on Super-resolution and Deep Neural Networks 计算机科学, 2018, 45(6A): 230-233. |
[15] | 林伟俊, 赵辽英, 厉小润. 基于逐像素递归处理的高光谱实时亚像元目标检测 Real-time Sub-pixel Object Detection for Hyperspectral Image Based on Pixel-by-pixel Processing 计算机科学, 2018, 45(6): 259-264. https://doi.org/10.11896/j.issn.1002-137X.2018.06.046 |
|