Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2020, Vol. 47 ›› Issue (1): 170-175.doi: 10.11896/jsjkx.181202337

• 计算机图形学&多媒体 • 上一篇    下一篇

基于非局部相似联合低秩表示的高光谱图像去噪

张显,叶军   

  1. (南京邮电大学理学院 南京210023)
  • 收稿日期:2018-12-17 发布日期:2020-01-19
  • 通讯作者: 叶军(yj8422092@163.com)
  • 基金资助:
    国家自然科学基金项目(61771250)

Hyperspectral Images Denoising Based on Non-local Similarity Joint Low-rank Representation

ZHANG Xian,YE Jun   

  1. (School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
  • Received:2018-12-17 Published:2020-01-19
  • About author:ZHANG Xian,born in 1994,postgradua-te.His main research interests include pattern recognition,remote sensing image processing,and machine learning;YE Jun,born in 1981,Ph.D,associate Professor.His main interestes include pattern recognition,machine learning,and image processing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61771250).

摘要: 高光谱图像(Hyperspectral Images,HSI)在采集过程中常受到多种类型的噪声干扰,会直接影响其在后续应用中的精度,因此HSI的去噪是一项十分重要的预处理过程。低秩表示(Low-Rank Representation,LRR)模型能很好地满足HSI的光谱性质,但该框架下字典的选择尤为重要,在当下仍是一个开放性的问题。同时,典型去噪方法仅考虑了图像的局部相关性,已不能满足去噪要求,非局部相似性在图像中也是不可忽略的。基于LRR,文中提出了一种新的HSI去噪算法。首先,综合考虑噪声的类型,选取具有更全面的噪声判别能力的字典;其次,在对图像分块处理的前提下,通过聚类的方式引入非局部相似信息,将相似的图像块联合起来进行低秩表示。在模拟Indian Pines数据集以及EO-1 Hyperion真实数据集上的实验结果均表明,相较于目前主流的HSI去噪方法,无论是在图像的目视效果还是在模拟数据集的定量评价指标下,所提方法均有显著提升。

关键词: 低秩表示, 非局部相似, 高光谱图像, 去噪, 字典选取

Abstract: The acquisition of hyperspectral images (HSI) is often interfered by multiple types of noise,which will directly affect accuracy in the subsequent applications.Therefore,HSI denoising is a very important pretreatment process.The low-rank representation (LRR) model can well satisfy the spectral properties of HSI.However,the choice of dictionary under this framework is particularly significant,which is still an open question at present.Meanwhile,the typical method can’t satisfy the requirement well by only considering the local correlation of the image,and the non-local similarity is equally of significance.Based on LRR,a new method of HSI denoising was proposed.Firstly,the type of noise is considered comprehensively and the dictionary with more comprehensive discrimination ability is selected.Secondly,on the premise of block processing,non-local similar information is introduced through clustering,and similar blocks are combined for LRR framework.The experimental results on the simulated In-dian Pines and real EO-1 Hyperion data set show that the proposed method performs better than the state-of-art HSI denosing methods both in the visual effect of the image and the quantitative evaluation index of the simulated data set.

Key words: Denoising, Dictionary selection, Hyperspectral images (HSI), Low-rank representation (LRR), Non-local similarity

中图分类号: 

  • TP751
[1]LV F,HAN M,QIU T.Remote sensing image classification based on ensemble extreme learing machine with stacked autoencode[J].IEEE Access,2017,5:9021-9031.
[2]LIU H C,LI S T,FANG L Y.Robust object tracking based on principal component analysis and local sparse resentation[J].IEEE Transactions on Instrumentaition & Measurement,2015,64(11):2863-2875.
[3]BO C,LU H C,WANG D.Weighted generalized nearest neighbor for hyperspectral image classification[J].IEEE Access,2017,5:1496-1509.
[4]YANG W,HOU K,LIU B,et al.Two-stage clustering tech- nique based on the neighboring union histogram for hyperspectral remote sensing images[J].IEEE Access,2017,5:5640-5647.
[5]WEN Y W,MICHAEL K,HUANG Y M.Efficient total variation minimization methords for color image restoration[J].IEEE Transactions on Image Processing,2008,17(11):2081-2088.
[6]DABOV K,FOI A,KATKOVNIK V,et al.Image denosing by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
[7]KOPSINIS Y,MCLAUGHLIN S.Development of EMD-based denoising methods inspired by wavelet thresholding[J].IEEE Transactions on Signal Processing,2009,57(4):1351-1362.
[8]ZHANG H Y.Hyperspectral image denoising with cubic total variation model[J].ISPRS Annals of Photogrammetry,Remote Sen-sing and Spatial Information Sciences,2012,1(7):95-98.
[9]YUAN Q Q,ZHANG L P,SHEN H F.Hyperspectral image denoising employing a spectral-spatial adaptive total variation model[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3660-3677.
[10]DABOV K,FOI A,EGIAZARIAN K.Video denoising by sparse 3D transform-domain collaborative filtering[C]∥15th European Signal Processing Conference.Poznan,Poland,2007:145-149.
[11]LIN T,BOURENNANE S.Survey of hyperspectralimage de- noising methods based on tensor decompositions[J].Eurasip Journal on Advances in Sibnal Processing,2013,2013(1):1-11.
[12]ZHAO Y Q,YANG J X.Hyperspectral image denoising via sparse representation and low-rank constraint[J].IEEE Transactions on Geoscience and Remote Sensing,2014,53(1):296-308.
[13]CHANG Y,YAN L,ZHONG S.Hyperspectral image denoising via spectral and spatial low-rank approximation[C]∥IEEE International Geoscience and Remote Sensing Symposium,Fort Worth,USA:IEEE,2017:4193-4195.
[14]HE W,ZAHNG H Y,SHEN H F,et al.Hyperspectral image denoising using local low-rank matrix recovery and global spa- tial-spectral total variation[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2018,11(3):713-729.
[15]CANDES E J,LI X D,MA Y,et al.Robust principal component analysis?[J].Journal of the ACM,2011,58(3):1-37.
[16]ZHANG H,HE W,ZHANG L P,et al.Hyperspectral image restoration using low-rank matrix recovery[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):4729-4743.
[17]LIU G C,LIN Z C,YAN S C,et al.Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Inteligence,2013,35(1):171-184.
[18]WANG M D,YU J,XUE J H,et al.Denoising of hyperspectral images using group low-rank representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(9):4420-4427.
[19]ZHOU T Y,TAO D C.GoDec:Randomized low-rank & sparse matrix decomposition in noisy case[C]∥Proceedings of the 28th International Conference on Machine Learning.WA,USA,2011:33-40.
[20]HUANG Z H,LI S T,FANG L Y,et al.Hyperspectral image denoising with group sparse and low-rank tensor decomposition[J].IEEE Access,2017,6:1380-1390.
[21]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[1] 郑建炜, 黄娟娟, 秦梦洁, 徐宏辉, 刘志.
基于非局部相似及加权截断核范数的高光谱图像去噪
Hyperspectral Image Denoising Based on Non-local Similarity and Weighted-truncated NuclearNorm
计算机科学, 2021, 48(9): 160-167. https://doi.org/10.11896/jsjkx.200600135
[2] 陶星朋, 徐宏辉, 郑建炜, 陈婉君.
基于非凸低秩矩阵逼近和全变分正则化的高光谱图像去噪
Hyperspectral Image Denoising Based on Nonconvex Low Rank Matrix Approximation and TotalVariation Regularization
计算机科学, 2021, 48(8): 125-133. https://doi.org/10.11896/jsjkx.200400143
[3] 巫勇, 刘永坚, 唐瑭, 王洪林, 郑建成.
基于鲁棒低秩张量恢复的高光谱图像去噪
Hyperspectral Image Denoising Based on Robust Low Rank Tensor Restoration
计算机科学, 2021, 48(11A): 303-307. https://doi.org/10.11896/jsjkx.210200103
[4] 钟颖宇, 陈松灿.
高阶多视图离群点检测
High-order Multi-view Outlier Detection
计算机科学, 2020, 47(9): 99-104. https://doi.org/10.11896/jsjkx.200600170
[5] 吴静, 周先春, 徐新菊, 黄金.
三维块匹配波域调和滤波图像去噪
Image Denoising by Mixing 3D Block Matching with Harmonic Filtering in Transform Domain
计算机科学, 2020, 47(7): 130-134. https://doi.org/10.11896/jsjkx.190600120
[6] 王燕, 王丽.
面向高光谱图像分类的局部Gabor卷积神经网络
Local Gabor Convolutional Neural Network for Hyperspectral Image Classification
计算机科学, 2020, 47(6): 151-156. https://doi.org/10.11896/jsjkx.190500147
[7] 罗月,童卞,景帅,张蒙,饶永明,闫峰.
基于卷积去噪自编码器的芯片表面弱缺陷检测方法
Detection Method of Chip Surface Weak Defect Based on Convolution Denoising Auto-encoders
计算机科学, 2020, 47(2): 118-125. https://doi.org/10.11896/jsjkx.190100141
[8] 曹义亲, 谢舒慧.
基于网格搜索的特定类别图像去噪算法
Category-specific Image Denoising Algorithm Based on Grid Search
计算机科学, 2020, 47(11): 168-173. https://doi.org/10.11896/jsjkx.190900004
[9] 李桂会,李晋江,范辉.
自适应匹配追踪图像去噪算法
Image Denoising Algorithm Based on Adaptive Matching Pursuit
计算机科学, 2020, 47(1): 176-185. https://doi.org/10.11896/jsjkx.181202280
[10] 肖佳, 张俊华, 梅礼晔.
改进的三维块匹配去噪算法
Improved Block-matching 3D Denoising Algorithm
计算机科学, 2019, 46(6): 288-294. https://doi.org/10.11896/j.issn.1002-137X.2019.06.043
[11] 刘佩, 贾建, 陈莉, 安影.
基于快速自适应的二维经验模态分解的图像去噪算法
Image Denoising Algorithm Based on Fast and Adaptive Bidimensional Empirical Mode Decomposition
计算机科学, 2019, 46(11): 260-266. https://doi.org/10.11896/jsjkx.190400159
[12] 杜秀丽, 胡兴, 陈波, 邱少明.
基于加权非局部相似性的视频压缩感知多假设重构算法
Multi-hypothesis Reconstruction Algorithm of DCVS Based on Weighted Non-local Similarity
计算机科学, 2019, 46(1): 291-296. https://doi.org/10.11896/j.issn.1002-137X.2019.01.045
[13] 张真真,王建林.
结合第二代Bandelet变换分块的字典学习图像去噪算法
Dictionary Learning Image Denoising Algorithm Combining Second Generation Bandelet Transform Block
计算机科学, 2018, 45(7): 264-270. https://doi.org/10.11896/j.issn.1002-137X.2018.07.046
[14] 雷倩,郝存明,张伟平.
基于超分辨率和深度神经网络的车型识别
Vehicle Recognition Based on Super-resolution and Deep Neural Networks
计算机科学, 2018, 45(6A): 230-233.
[15] 林伟俊, 赵辽英, 厉小润.
基于逐像素递归处理的高光谱实时亚像元目标检测
Real-time Sub-pixel Object Detection for Hyperspectral Image Based on Pixel-by-pixel Processing
计算机科学, 2018, 45(6): 259-264. https://doi.org/10.11896/j.issn.1002-137X.2018.06.046
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!