计算机科学 ›› 2015, Vol. 42 ›› Issue (4): 31-36.doi: 10.11896/j.issn.1002-137X.2015.04.004
吕兴利,施智平,李晓娟,关 永,叶世伟,张 杰
LV Xing-li, SHI Zhi-ping, LI Xiao-juan, GUAN Yong, YE Shi-wei and ZHANG Jie
摘要: 连续傅里叶变换(CFT)在数学和工程技术领域都有着广泛应用。利用高阶逻辑定理证明器HOL4,实现了对连续傅里叶变换定义及其常用运算性质的形式化,包括线性、频移、反转性、积分、时域一阶微分及高阶微分运算性质,为采用形式化方法分析相关系统奠定了基础。最后利用定理证明的方法对电阻电感电容(RLC)串联谐振电路的频率响应特性进行了验证,说明了CFT形式化的初步应用。
[1] 韩俊刚,杜慧敏.数字硬件的形式化验证[M].北京:北京大学出版社,2001 [2] Slind,Konrad,Norrish M.A brief overview of HOL4.Theorem Proving in Higher Order Logics[M].Springer Berlin Heidelberg,2008:28-32 [3] http://hol.sourceforge.net/ [4] Akbarpour B.Modeling and Verification of DSP Designsin HOL[D].Montreal,Quebec,Canada:Department of Electrical and Computer Engineering,Concordia University,Aprial 2005 [5] Harrison J,Théry L.Extending the HOL theorem prover with acomputer algebra system to reason about the reals[M]∥Higher Order Logic Theorem Proving and Its Applications.Springer Berlin Heidelberg,1994:174-184 [6] 张玉鹏,施智平,关永,等.SpaceWire 译码电路在HOL4中的形式化验证[J].小型微型计算机系统,2013,8:1959-1963 [7] Abdullah A N M,Akbarpour B,Tahar S.Formal analysis and verification of an OFDM modem design using HOL[C]∥Formal Methods in Computer Aided Design,2006(FMCAD’06).IEEE,2006:189-190 [8] 盖云英,包革军,等.复变函数与积分变换[M].北京:科学出版社,2006 [9] 曾禹村,张宝俊,等.信号与系统[M].北京:北京理工大学出版社,2008 [10] Bracewell R N.The Fourier transform and its applications[M].New York,1965 [11] Taqdees S H,Hasan O.Formalization of Laplace TransformUsing the Multivariable Calculus Theory of HOL-Light[C]∥Logic for Programming,Artificial Intelligence,and Reasoning.Springer Berlin Heidelberg.New York:McGraw-Hill,1986,2013:744-758 [12] HarrisonJ.Theorem Proving with the Real Numbers [R].Technical Report number 408,University of Cambridge Computer Laboratory,December 1996 [13] 谷伟卿,施智平,关永,等.Gauge积分在HOL4中的形式化[J].计算机科学,2013,0(2):191-194 [14] Siddique U,Hasan O.Formal analysis of fractional order sys-tems in HOL[C]∥Computer-Aided Design (FMCAD).IEEE,2011:163-170 [15] 华东师范大学数学系.数学分析[M].北京:高等教育出版社,2006 |
No related articles found! |
|