Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3649329.3655965acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article
Open access

4-Transistor Ternary Content Addressable Memory Cell Design using Stacked Hybrid IGZO/Si Transistors

Published: 07 November 2024 Publication History

Abstract

In this paper, we propose a 4T-based paired orthogonally stacked transistors for random access memory (POST-RAM) cell structure and also suggest ternary content addressable memory (TCAM) applications. POST-RAM cells feature vertically stacked read and write transistors, maximizing area efficiency by utilizing only two transistors' space. POST-RAM employs InGaZnO (IGZO) channels for write transistors and single crystal silicon channels for read transistors, which results in both extremely long memory retention and fast reading performance. A comprehensive 3D-TCAD simulation is conducted to validate the procedural design of the proposed device structure. Furthermore, we introduced a self-clamped searching scheme (SC2S) designed to enhance the efficiency of TCAM operations. The results conclusively demonstrate that operating a TCAM based on the proposed POST-RAM architecture can lead to a 20% improvement in energy-delay product (EDP). Notably, the delay performance can be enhanced by up to 40% when compared to a 16T SRAM-based TCAM. Additionally, the proposed scheme enables a more than sixfold reduction in cell area, demonstrating an efficient use of space.

References

[1]
S. Stas, "Associative processing with cams," in Proceedings of NORTHCON'93 Electrical and Electronics Convention, pp. 161--167, IEEE, 1993.
[2]
K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (cam) circuits and architectures: A tutorial and survey," IEEE journal of solid-state circuits, vol. 41, no. 3, pp. 712--727, 2006.
[3]
G. Qin, S. Ata, I. Oka, and C. Fujiwara, "Effective bit selection methods for improving performance of packet classifications on ip routers," in Global Telecommunications Conference, 2002. GLOBECOM'02. IEEE, vol. 3, pp. 2350--2354, IEEE, 2002.
[4]
H. J. Chao, "Next generation routers," Proceedings of the IEEE, vol. 90, no. 9, pp. 1518--1558, 2002.
[5]
K. Ni, X. Yin, A. F. Laguna, S. Joshi, S. Dünkel, M. Trentzsch, J. Müller, S. Beyer, M. Niemier, X. S. Hu, et al., "Ferroelectric ternary content-addressable memory for one-shot learning," Nature Electronics, vol. 2, no. 11, pp. 521--529, 2019.
[6]
K. Nii, T. Amano, N. Watanabe, M. Yamawaki, K. Yoshinaga, M. Wada, and I. Hayashi, "13.6 a 28nm 400mhz 4-parallel 1.6 gsearch/s 80mb ternary cam," in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 240--241, IEEE, 2014.
[7]
O. Tyshchenko and A. Sheikholeslami, "Match sensing using match-line stability in content-addressable memories (cam)," IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 1972--1981, 2008.
[8]
I. Hayashi, T. Amano, N. Watanabe, Y. Yano, Y. Kuroda, M. Shirata, K. Dosaka, K. Nii, H. Noda, and H. Kawai, "A 250-mhz 18-mb full ternary cam with low-voltage matchline sensing scheme in 65-nm cmos," IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2671--2680, 2013.
[9]
A. Razavieh, P. Zeitzoff, and E. J. Nowak, "Challenges and limitations of cmos scaling for finfet and beyond architectures," IEEE Transactions on Nanotechnology, vol. 18, pp. 999--1004, 2019.
[10]
X. Wang, L. Wang, Y. Wang, J. An, C. Dou, Z. Wu, X. Zhang, J. Liu, C. Zhang, Z. Yao, et al., "A 4t2r rram bit cell for highly parallel ternary content addressable memory," IEEE Transactions on Electron Devices, vol. 68, no. 10, pp. 4933--4937, 2021.
[11]
B. Song, T. Na, J. P. Kim, S. H. Kang, and S.-O. Jung, "A 10t-4mtj nonvolatile ternary cam cell for reliable search operation and a compact area," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 6, pp. 700--704, 2016.
[12]
E. Garzón, M. Lanuzza, A. Teman, and L. Yavits, "Am 4: Mram crossbar based cam/tcam/acam/ap for in-memory computing," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 13, no. 1, pp. 408--421, 2023.
[13]
J. Li, R. Montoye, M. Ishii, K. Stawiasz, T. Nishida, K. Maloney, G. Ditlow, S. Lewis, T. Maffitt, R. Jordan, et al., "1mb 0.41 μm 2 2t-2r cell nonvolatile tcam with two-bit encoding and clocked self-referenced sensing," in 2013 Symposium on VLSI Technology, pp. C104--C105, IEEE, 2013.
[14]
L. Wang, W. Ye, J. Lai, J. Liu, J. Yang, X. Si, C. Huo, C. Dou, X. Xu, Q. Liu, et al., "A 14nm 100kb 2t1r transpose rram with> 150x resistance ratio enhancement and 27.95% reduction on energy-latency product using low-power near threshold read operation and fast data-line current stabling scheme," in 2021 Symposium on VLSI Technology, pp. 1--2, IEEE, 2021.
[15]
C.-F. Yang, C.-Y. Wu, M.-C. Shih, M.-T. Yang, M.-H. Yang, Y.-T. Wu, T.-C. Chien, C.-W. Lai, S.-C. Tsai, W.-T. Chu, et al., "Demonstration of high endurance capability on mega-bit rram macro and model of ppm level failures," in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 318--319, IEEE, 2022.
[16]
Y.-S. Chen, H.-Y. Lee, P.-S. Chen, P.-Y. Gu, W.-H. Liu, W.-S. Chen, Y.-Y. Hsu, C.-H. Tsai, F. Chen, M.-J. Tsai, and C. Lien, "Good endurance and memory window for Ti/HfOx pillar rram at 50-nm scale by optimal encapsulation layer," IEEE Electron Device Letters, vol. 32, no. 3, pp. 390--392, 2011.
[17]
A. Belmonte, H. Oh, S. Subhechha, N. Rassoul, H. Hody, H. Dekkers, R. Delhougne, L. Ricotti, K. Banerjee, A. Chasin, et al., "Tailoring igzo-tft architecture for capacitorless dram, demonstrating> 10 3 s retention,> 10 11 cycles endurance and l g scalability down to 14nm," in 2021 IEEE International Electron Devices Meeting (IEDM), pp. 10--6, IEEE, 2021.
[18]
M. Oota, Y. Ando, K. Tsuda, T. Koshida, S. Oshita, A. Suzuki, K. Fukushima, S. Nagatsuka, T. Onuki, R. Hodo, et al., "3d-stacked caac-in-ga-zn oxide fets with gate length of 72nm," in 2019 IEEE International Electron Devices Meeting (IEDM), pp. 3--2, IEEE, 2019.
[19]
K. Huang, X. Duan, J. Feng, Y. Sun, C. Lu, C. Chen, G. Jiao, X. Lin, J. Shao, S. Yin, J. Sheng, Z. Wang, W. Zhang, X. Chuai, J. Niu, W. Wang, Y. Wu, W. Jing, Z. Wang, J. Xu, G. Yang, D. Geng, L. Li, and M. Liu, "Vertical channel-all-around (caa) igzo fet under 50 nm cd with high read current of 32.8 μa/μm (vth + 1 v), well-performed thermal stability up to 120 °C for low latency, high-density 2t0c 3d dram application," in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pp. 296--297, 2022.
[20]
M. Oota, Y. Ando, K. Tsuda, T. Koshida, S. Oshita, A. Suzuki, K. Fukushima, S. Nagatsuka, T. Onuki, R. Hodo, et al., "3d-stacked caac-in-ga-zn oxide fets with gate length of 72nm," in 2019 IEEE International Electron Devices Meeting (IEDM), pp. 3--2, IEEE, 2019.
[21]
W. Jeong, S. Maeda, H. Lee, K. Lee, T. Lee, D. Park, B. Kim, J. Do, T. Fukai, D. Kwon, et al., "True 7nm platform technology featuring smallest finfet and smallest sram cell by euv, special constructs and 3 rd generation single diffusion break," in 2018 IEEE Symposium on VLSI Technology, pp. 59--60, IEEE, 2018.
[22]
K. Cheng, C. Park, H. Wu, J. Li, S. Nguyen, J. Zhang, M. Wang, S. Mehta, Z. Liu, R. Conti, et al., "Improved air spacer co-integrated with self-aligned contact (sac) and contact over active gate (coag) for highly scaled cmos technology," in 2020 IEEE Symposium on VLSI Technology, pp. 1--2, IEEE, 2020.
[23]
S.-Y. Wu, C. Lin, M. Chiang, J. Liaw, J. Cheng, S. Yang, C. Tsai, P. Chen, T. Miyashita, C. Chang, V. Chang, K. Pan, J. Chen, Y. Mor, K. Lai, C. Liang, H. Chen, S. Chang, C. Lin, C. Hsieh, R. Tsui, C. Yao, C. Chen, R. Chen, C. Lee, H. Lin, C. Chang, K. Chen, M. Tsai, K. Chen, Y. Ku, and S. M. Jang, "A 7nm cmos platform technology featuring 4th generation finfet transistors with a 0.027um2 high density 6-t sram cell for mobile soc applications," in 2016 IEEE International Electron Devices Meeting (IEDM), pp. 2.6.1--2.6.4, 2016.
[24]
N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, et al., "Stacked nanosheet gate-all-around transistor to enable scaling beyond finfet," in 2017 Symposium on VLSI Technology, pp. T230--T231, IEEE, 2017.

Index Terms

  1. 4-Transistor Ternary Content Addressable Memory Cell Design using Stacked Hybrid IGZO/Si Transistors

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      DAC '24: Proceedings of the 61st ACM/IEEE Design Automation Conference
      June 2024
      2159 pages
      ISBN:9798400706011
      DOI:10.1145/3649329
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      In-Cooperation

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 07 November 2024

      Check for updates

      Author Tags

      1. 2T0C eDRAM
      2. IGZO transistor
      3. monolithic 3D stacked transistors
      4. ternary content-addressable memory (TCAM)

      Qualifiers

      • Research-article

      Conference

      DAC '24
      Sponsor:
      DAC '24: 61st ACM/IEEE Design Automation Conference
      June 23 - 27, 2024
      CA, San Francisco, USA

      Acceptance Rates

      Overall Acceptance Rate 1,770 of 5,499 submissions, 32%

      Upcoming Conference

      DAC '25
      62nd ACM/IEEE Design Automation Conference
      June 22 - 26, 2025
      San Francisco , CA , USA

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 33
        Total Downloads
      • Downloads (Last 12 months)33
      • Downloads (Last 6 weeks)33
      Reflects downloads up to 19 Nov 2024

      Other Metrics

      Citations

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media