Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article
Open access

Shape dithering for 3D printing

Published: 22 July 2022 Publication History

Abstract

We present an efficient, purely geometric, algorithmic, and parameter free approach to improve surface quality and accuracy in voxel-controlled 3D printing by counteracting quantization artifacts. Such artifacts arise due to the discrete voxel sampling of the continuous shape used to control the 3D printer, and are characterized by low-frequency geometric patterns on surfaces of any orientation. They are visually disturbing, particularly on small prints or smooth surfaces, and adversely affect the fatigue behavior of printed parts. We use implicit shape dithering, displacing the part's signed distance field with a high-frequent signal whose amplitude is adapted to the (anisotropic) print resolution. We expand the reverse generalized Fourier slice theorem by shear transforms, which we leverage to optimize a 3D blue-noise mask to generate the anisotropic dither signal. As a point process it is efficient and does not adversely affect 3D halftoning. We evaluate our approach for efficiency, geometric accuracy and show its advantages over the state of the art.

Supplemental Material

MP4 File
presentation
SRT File
presentation
ZIP File
supplemental material

References

[1]
3D Printing Industry. 2020. Mimaki 3DUJ-2207 UV-LED 3D Printer. https://3dprintingindustry.com/news/mimaki-opens-up-full-3d-color-printing-for-less-than-e40k-with-3duj-2207-uv-led-3d-printer-178953/.
[2]
A.U. Agar and J.P. Allebach. 2005. Model-based color halftoning using direct binary search. Image Processing, IEEE Transactions on 14, 12 (2005), 1945--1959.
[3]
M. Alexa, K. Hildebrand, and S. Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36, 1, Article 12 (Jan. 2017), 16 pages.
[4]
M. Alexa and J.E. Kyprianidis. 2015. Error diffusion on meshes. Computers and Graphics (Proc. SMI 2014) 46 (2015), 336--344.
[5]
T. Auzinger, W. Heidrich, and B. Bickel. 2018. Computational design of nanostructural color for additive manufacturing. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 1--16.
[6]
T. Baar, S. Samadzadegan, H. Brettel, P. Urban, and M. V. Ortiz Segovia. 2014. Printing gloss effects in a 2.5 D system. In IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 90180M--90180M.
[7]
V. Babaei, K. Vidimče, M. Foshey, A. Kaspar, P. Didyk, and W. Matusik. 2017. Color contoning for 3D printing. ACM TOG (Proc. SIGGRAPH) 36, 124 (2017). Issue 4.
[8]
B. E. Bayer. 1973. An optimum method for two-level rendition of continuous-tone pictures. In IEEE Intl. Conf. on Comm. Seattle, WA, 11--15.
[9]
A. Brunton and L. Abu Rmaileh. 2021. Displaced Signed Distance Fields for Additive Manufacturing. ACM TOG (Proc. SIGGRAPH) 40, 4 (2021).
[10]
A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially Varying Color and Translucency. ACM TOG (Proc. SIGGRAPH) 37, 4 (2018), 157:1--157:13.
[11]
A. Brunton, C. A. Arikan, and P. Urban. 2015. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM TOG 35, 1 (2015), 4.
[12]
J. Chang, B. Alain, and V. Ostromoukhov. 2009. Structure-Aware Error Diffusion. ACM TOG (Proc. SIGGRAPH Asia) 28, 5 (2009), 162:1--162:8.
[13]
W. Cho, E.M. Sachs, N. M. Patrikalakis, and D. E. Troxel. 2003. A dithering algorithm for local composition control with three-dimensional printing. CAD 35, 9 (2003), 851--867.
[14]
Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and Ugo Erra (Eds.). The Eurographics Association.
[15]
D. Cohen-Or and A. Kaufman. 1995. Fundamentals of Surface Voxelization. Graphical Models and Image Processing 57, 6 (November 1995), 453--461.
[16]
Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 62:1--62:10.
[17]
DP Polar. 2020. AMpolar i2. https://www.dppolar.de/en/3d-printer.
[18]
O. Elek, D. Sumin, R. Zhang, T. Weyrich, K. Myszkowski, B. Bickel, A. Wilkie, and J. Křivánek. 2017. Scattering-aware Texture Reproduction for 3D Printing. ACM TOG (Proc. of SIGGRAPH Asia) 36, 6 (2017), 241:1--241:15.
[19]
R.W. Floyd and L. Steinberg. 1976. An adaptive algorithm for spatial grey scale. In Proceedings of the Society of Information Display. SID, 75--77.
[20]
M. Hašan, M. Fuchs, W. Matusik, H. Pfister, and S. Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM TOG (Proc. SIGGRAPH) 29, 4 (2010), 61:1--61:9.
[21]
Fraunhofer IGD. 2020. Cuttlefish Version 2020.09. https://www.cuttlefish.de/.
[22]
Intel. 2020. Intel Threading Building Blocks. https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html.
[23]
A. Kampker, K. Kreisköther, and C. Reinders. 2017. Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments. International Journal of Materials and Metallurgical Engineering 11, 3 (2017), 242 -- 249. https://publications.waset.org/vol/123
[24]
E. Kritchman. 2010. Method for printing of three-dimensional objects. US Patent 7,658,976.
[25]
Ares Lagae and George Drettakis. 2011. Filtering solid Gabor noise. ACM Transactions on Graphics (TOG) 30, 4 (2011), 1--6.
[26]
Y. Lan, Y. Dong, F. Pellacini, and X. Tong. 2013. Bi-scale appearance fabrication. ACM TOG (Proc. SIGGRAPH) 32, 4 (2013), 145--1.
[27]
D.L. Lau, G.R. Arce, and N.C. Gallagher. 1999. Digital halftoning by means of green-noise masks. JOSA A 16, 7 (1999), 1575--1586.
[28]
D. L. Lau and G. R. Arce. 2001. Modern digital halftoning. CRC Press.
[29]
W.E. Lorensen and H.E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163--169.
[30]
A. Luongo, V. Falster, M.B. Doest, M.M. Ribo, E.R. Eiríksson, D.B. Pedersen, and J.R. Frisvad. 2020. Microstructure control in 3D printing with digital light processing. 39, 1 (2020), 347--359.
[31]
T. Malzbender, R. Samadani, S. Scher, A. Crume, D. Dunn, and J. Davis. 2012. Printing reflectance functions. ACM TOG 31, 3 (2012), 1--11.
[32]
W. Matusik, B. Ajdin, J. Gu, J. Lawrence, H. Lensch, F. Pellacini, and S. Rusinkiewicz. 2009. Printing spatially-varying reflectance. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 128.
[33]
Mimaki. 2020. 3DUJ-553 3D Printer. https://www.mimakieurope.com/products/3d/3duj-553/.
[34]
T. Mitsa and K.J. Parker. 1992. Digital halftoning technique using a blue-noise mask. JOSA A 9, 11 (1992), 1920--1929.
[35]
J.P. Moore and C.B. Williams. 2015. Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyping Journal (2015).
[36]
P. Morovič, J. Morovič, J. Gondek, and R. Ulichney. 2017a. Direct pattern control halftoning of Neugebauer primaries. IEEE TIP 26, 9 (2017), 4404--4413.
[37]
P. Morovič, J. Morovič, I. Tastl, M. Gottwals, and G. Dispoto. 2017b. HANS3D: a multi-material, volumetric, voxel-by-voxel content processing pipeline for color and beyond. In Color and Imaging Conference, Vol. 2017. Society for Imaging Science and Technology, 219--225.
[38]
E. Napadensky. 2014. Method and system for three-dimensional fabrication. US Patent 8,784,723.
[39]
R. Ng. 2005. Fourier slice photography. ACM TOG (2005), 735--744.
[40]
A. Orth, K.L. Sampson, K. Ting, J. Boisvert, and C. Paquet. 2021. Correcting ray distortion in tomographic additive manufacturing. Optics Express 29, 7 (Mar 2021), 11037--11054.
[41]
V. Ostromoukhov. 2001. A Simple and Efficient Error-Diffusion Algorithm. In Proc. SIGGRAPH.
[42]
M. Page, G. Obein, C. Boust, and A. Razet. 2017. Adapted modulation transfer function method for characterization and improvement of 3D printed surfaces. Electronic Imaging 2017, 8 (2017), 92--100.
[43]
W.-M. Pang, Y. Qu, T.-T. Wong, D. Cohen-Or, and P.A. Heng. 2008. Structure-aware halftoning. ACM TOG (Proc. SIGGRAPH) 27, 3 (2008), 89.
[44]
C. Peters. 2017. Moments in Graphics: The problem with 3D blue noise. http://momentsingraphics.de/3DBlueNoise.html.
[45]
M. Piovarči, M. Foshey, V. Babaei, S. Rusinkiewicz, W. Matusik, and P. Didyk. 2020. Towards spatially varying gloss reproduction for 3D printing. ACM TOG (Proc. SIGGRAPH Asia) 39, 6 (2020), 1--13.
[46]
Quantica. 2020. Tech Platform. https://quantica3d.com/technology/.
[47]
O. Rouiller, B. Bickel, J. Kautz, W. Matusik, and M. Alexa. 2013. 3D-printing spatially varying BRDFs. IEEE CG&A 33, 6 (2013), 48--57.
[48]
S. Samadzadegan, T. Baar, P. Urban, M.V.O. Segovia, and J. Blahová. 2015. Controlling colour-printed gloss by varnish-halftones. In Measuring, Modeling, and Reproducing Material Appearance 2015, Vol. 9398. International Society for Optics and Photonics, 93980V.
[49]
Stratasys. 2020. J8 Series 3D Printers. https://www.stratasys.com/3d-printers/j8-series.
[50]
D. Sumin, T. Rittig, Babaei V, T. Nindel, A. Wilkie, P. Didyk, B. Bickel, J. KR, ivánek, K. Myszkowski, and T. Weyrich. 2019. Geometry-aware scattering compensation for 3D printing. ACM TOG (Proc. SIGGRAPH) 38, 4 (2019).
[51]
G. Taubin. 1995. A Signal Processing Approach to Fair Surface Design. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '95). Association for Computing Machinery, New York, NY, USA, 351--358.
[52]
R.A. Ulichney. 1993. Void-and-cluster method for dither array generation. In Human Vision, Visual Processing, and Digital Display IV, Vol. 1913. International Society for Optics and Photonics, 332--343.
[53]
F. L. Van Nes and M. A. Bouman. 1967. Spatial modulation transfer in the human eye. JOSA 57, 3 (1967), 401--406.
[54]
Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600--612.
[55]
Xaar. 2020. High Laydown Technology. https://www.xaar.com/en/about/xaar-technologies/high-laydown-technology/.
[56]
D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, and P. Wonka. 2015. A Survey of Blue-Noise Sampling and Its Applications. J. Comp. Sci. and Tech. 30 (2015), 439--453.
[57]
B. Zhou and X. Fang. 2003. Improving Mid-tone Quality of Variable-Coefficient Error Diffusion Using Threshold Modulation. ACM TOG (Proc. SIGGRAPH) 22, 3 (2003), 437--444.

Cited By

View all
  • (2023)Meso-Facets for Goniochromatic 3D PrintingACM Transactions on Graphics10.1145/359213742:4(1-12)Online publication date: 26-Jul-2023
  • (2023)Cuttlefish: Pushing the Limits of Graphical 3-D PrintingIEEE Computer Graphics and Applications10.1109/MCG.2023.329817343:5(114-121)Online publication date: 1-Sep-2023
  • (2023)On the quantitative assessment of the effect of multiple process parameters on the printed layer height in 3D inkjet printingVirtual and Physical Prototyping10.1080/17452759.2023.226989818:1Online publication date: 24-Oct-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 41, Issue 4
July 2022
1978 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3528223
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 July 2022
Published in TOG Volume 41, Issue 4

Check for updates

Author Tag

  1. 3D printing

Qualifiers

  • Research-article

Funding Sources

  • Fraunhofer Internal project Highlight

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)279
  • Downloads (Last 6 weeks)75
Reflects downloads up to 26 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Meso-Facets for Goniochromatic 3D PrintingACM Transactions on Graphics10.1145/359213742:4(1-12)Online publication date: 26-Jul-2023
  • (2023)Cuttlefish: Pushing the Limits of Graphical 3-D PrintingIEEE Computer Graphics and Applications10.1109/MCG.2023.329817343:5(114-121)Online publication date: 1-Sep-2023
  • (2023)On the quantitative assessment of the effect of multiple process parameters on the printed layer height in 3D inkjet printingVirtual and Physical Prototyping10.1080/17452759.2023.226989818:1Online publication date: 24-Oct-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media