Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3595360.3595858acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article
Open access

EVA: An End-to-End Exploratory Video Analytics System

Published: 18 June 2023 Publication History

Abstract

In recent years, deep learning models have revolutionized computer vision, enabling diverse applications. However, these models are computationally expensive, and leveraging them for video analytics involves low-level imperative programming. To address these efficiency and usability challenges, the database community has developed video database management systems (VDBMSs). However, existing VDBMSs lack extensibility and composability and do not support holistic system optimizations, limiting their practical application. In response to these issues, we present our vision for EVA, a VDBMS that allows for extensible support of user-defined functions and employs a Cascades-style query optimizer. Additionally, we leverage Ray's distributed execution to enhance scalability and performance and explore hardware-specific optimizations to facilitate runtime optimizations. We discuss the architecture and design of EVA, our achievements thus far, and our research roadmap.

References

[1]
Apache Parquet. https://parquet.apache.org/.
[2]
EVA Video Database System. https://pypi.org/project/evadb/.
[3]
S. R. Alekh Jindal, Konstantions Karanasos and H. Patel. Selecting Subexpressions to Materialize at Datacenter Scale. In VLDB, 2018.
[4]
F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan, M. Alizadeh, H. Balakrishnan, M. Cafarella, T. Kraska, and S. Madden. MIRIS: Fast Object Track Queries in Video. In SIGMOD, pages 1907--1921, 2020.
[5]
G. Bradski. The OpenCV Library. Dr. Dobb's Journal of Software Tools, 2000.
[6]
E. Brewer. Volcano & the Exchange Operator, 2022.
[7]
J. Cao, K. Sarkar, R. Hadidi, J. Arulraj, and H. Kim. FiGO: Fine-Grained Query Optimization in Video Analytics. In SIGMOD, pages 559--572, 2022. event-place: Philadelphia, PA, USA.
[8]
P. Chunduri, J. Bang, Y. Lu, and J. Arulraj. Zeus: Efficiently Localizing Actions in Videos Using Reinforcement Learning. In SIGMOD, pages 545--558, 2022.
[9]
M. Daum, B. Haynes, D. He, A. Mazumdar, M. Balazinska, and A. Cheung. TASM: A Tile-Based Storage Manager for Video Analytics. ArXiv, abs/2006.02958, 2020.
[10]
M. Daum, E. Zhang, D. He, M. Balazinska, B. Haynes, R. Krishna, A. Craig, and A. Wirsing. VOCAL: Video Organization and Interactive Compositional AnaLytics. In CIDR, 2022.
[11]
J. Dean, D. Patterson, and C. Young. A new golden age in computer architecture: Empowering the machine-learning revolution. MICRO, 38(2):21--29, 2018. Publisher: IEEE.
[12]
J. Dellinger, C. Shores, A. Craig, S. Kachel, M. Heithaus, W. Ripple, and A. Wirsing. Predators reduce niche overlap between sympatric prey. Oikos, 12 2021.
[13]
A. Deshpande, Z. Ives, V. Raman, et al. Adaptive query processing. Foundations and Trends in Databases, 1(1):1--140, 2007.
[14]
P. S. Foundation. Importlib - the implementation of import, 2022.
[15]
C. Galindo-Legaria and M. Joshi. Orthogonal optimization of subqueries and aggregation. In SIGMOD '01, 2001.
[16]
A. Gandhi, Y. Asada, V. Fu, A. Gemawat, L. Zhang, R. Sen, C. Curino, J. Camacho-Rodríguez, and M. Interlandi. The Tensor Data Platform: Towards an AI-centric Database System. CIDR, 2023.
[17]
G. Graefe. The Cascades Framework for Query Optimization. IEEE Data Eng. Bull., 18(3):19--29, 1995.
[18]
N. Hardavellas and I. Pandis. Intra-Query Parallelism, pages 1567--1568. Springer US, Boston, MA, 2009.
[19]
M. Heithaus, L. Dill, G. Marshall, and B. Buhleier. Habitat use and foraging behavior of tiger sharks (galeocerdo cuvier) in a seagrass ecosystem. Marine Biology, 140(2):237--248, 2002.
[20]
D. Kang, P. Bailis, and M. Zaharia. BlazeIt: Optimizing Declarative Aggregation and Limit Queries for Neural Network-Based Video Analytics. Proc. VLDB Endow., 13:533--546, 2019.
[21]
D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. NoScope: Optimizing Neural Network Queries over Video at Scale. VLDB, 10(11):1586--1597, Aug. 2017. Publisher: VLDB Endowment.
[22]
D. Kang, F. Romero, P. D. Bailis, C. Kozyrakis, and M. Zaharia. VIVA: an end-to-end system for interactive video analytics. In CIDR, 2022.
[23]
G. Liu, H. Shi, A. Kiani, A. Khreishah, J. Lee, N. Ansari, C. Liu, and M. M. Yousef. Smart Traffic Monitoring System using Computer Vision and Edge Computing. IEEE Transactions on Intelligent Transportation Systems, 2021. Publisher: IEEE.
[24]
Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri. Accelerating Machine Learning Inference with Probabilistic Predicates. SIGMOD, 2018.
[25]
P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica. Ray: A distributed framework for emerging AI applications. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pages 561--577, Carlsbad, CA, Oct. 2018. USENIX Association.
[26]
Pandas. pandas-dev/pandas: Pandas, Feb. 2020.
[27]
K. Park, K. Saur, D. Banda, R. Sen, M. Interlandi, and K. Karanasos. End-to-end Optimization of Machine Learning Prediction Queries. In SIGMOD, pages 587--601, 2022.
[28]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS, 2019.
[29]
A. Rheinländer, U. Leser, and G. Graefe. Optimization of complex dataflows with user-defined functions. ACM Computing Surveys (CSUR), 50(3):1--39, 2017. Publisher: ACM New York, NY, USA.
[30]
N. Richardson, I. Cook, N. Crane, D. Dunnington, R. François, J. Keane, D. Moldovan-Grünfeld, J. Ooms, and Apache Arrow. arrow: Integration to Apache Arrow, 2022. https://github.com/apache/arrow/, https://arrow.apache.org/docs/r/.
[31]
F. Romero, J. Hauswald, A. Partap, D. Kang, M. Zaharia, and C. Kozyrakis. Optimizing video analytics with declarative model relationships. Proc. VLDB Endow., 16(3):447--460, 2022.
[32]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein. Imagenet large scale visual recognition challenge. IJCV, 115(3):211--252, 2015. Publisher: Springer.
[33]
M. A. Sakr and R. H. Güting. Spatiotemporal pattern queries. GeoInformatica, 15(3):497--540, 2011.
[34]
M. Satyanarayanan, P. B. Gibbons, L. B. Mummert, P. Pillai, P. Simoens, and R. Sukthankar. Cloudlet-based just-in-time indexing of iot video. In Global Internet of Things Summit, GIoTS 2017, Geneva, Switzerland, June 6--9, 2017, pages 1--8. IEEE, 2017.
[35]
F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 815--823, 2015.
[36]
A. W. Senior, L. M. Brown, A. Hampapur, C. Shu, Y. Zhai, R. S. Feris, Y. Tian, S. Borger, and C. R. Carlson. Video analytics for retail. In AVSS, pages 423--428. IEEE Computer Society, 2007.
[37]
Z. Shou, D. Wang, and S.-F. Chang. Temporal action localization in untrimmed videos via multi-stage cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1049--1058, 2016.
[38]
T. Skopal, F. Falchi, J. Lokoc, M. L. Sapino, I. Bartolini, and M. Patella, editors. Similarity Search and Applications - 15th International Conference, SISAP 2022, Bologna, Italy, October 5--7, 2022, Proceedings, volume 13590 of Lecture Notes in Computer Science. Springer, 2022.
[39]
T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38--45, Online, Oct. 2020. Association for Computational Linguistics.
[40]
Z. Xu, G. T. Kakkar, J. Arulraj, and U. Ramachandran. EVA: A Symbolic Approach to Accelerating Exploratory Video Analytics with Materialized Views. In SIGMOD, pages 602--616, 2022.
[41]
S. Yang, E. Bailey, Z. Yang, J. Ostrometzky, G. Zussman, I. Seskar, and Z. Kostic. COSMOS smart intersection: Edge compute and communications for bird's eye object tracking. In PerCom, pages 1--7. IEEE, 2020.

Cited By

View all
  • (2024)ThalamusDB: Approximate Query Processing on Multi-Modal DataProceedings of the ACM on Management of Data10.1145/36549892:3(1-26)Online publication date: 30-May-2024
  • (2024)V2V: Efficiently Synthesizing Video Results for Video Queries2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00449(5614-5621)Online publication date: 13-May-2024

Index Terms

  1. EVA: An End-to-End Exploratory Video Analytics System
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    DEEM '23: Proceedings of the Seventh Workshop on Data Management for End-to-End Machine Learning
    June 2023
    51 pages
    ISBN:9798400702044
    DOI:10.1145/3595360
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 June 2023

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    DEEM '23
    Sponsor:

    Acceptance Rates

    DEEM '23 Paper Acceptance Rate 9 of 13 submissions, 69%;
    Overall Acceptance Rate 44 of 67 submissions, 66%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)506
    • Downloads (Last 6 weeks)62
    Reflects downloads up to 20 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)ThalamusDB: Approximate Query Processing on Multi-Modal DataProceedings of the ACM on Management of Data10.1145/36549892:3(1-26)Online publication date: 30-May-2024
    • (2024)V2V: Efficiently Synthesizing Video Results for Video Queries2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00449(5614-5621)Online publication date: 13-May-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media