Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/3453483.3454029acmconferencesArticle/Chapter ViewAbstractPublication PagespldiConference Proceedingsconference-collections
research-article
Public Access

Gleipnir: toward practical error analysis for Quantum programs

Published: 18 June 2021 Publication History

Abstract

Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.

References

[1]
Dorit Aharonov, Alexei Kitaev, and Noam Nisan. 1998. Quantum Circuits with Mixed States. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC 1998). 20–30. https://doi.org/10.1145/276698.276708
[2]
Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Ł ukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2562110
[3]
Carmen G. Almudéver, Lingling Lao, Xiang Fu, Nader Khammassi, Imran Ashraf, Dan Iorga, Savvas Varsamopoulos, Christopher Eichler, Andreas Wallraff, Lotte Geck, Andre Kruth, Joachim Knoch, Hendrik Bluhm, and Koen Bertels. 2017. The Engineering Challenges in Quantum Computing. In Proceedings of 2017 Design, Automation Test in Europe Conference Exhibition (DATE 2017). 836–845. https://doi.org/10.23919/DATE.2017.7927104
[4]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019. Quantum Supremacy Using a Programmable Superconducting Processor. Nature, 574, 7779 (2019), 505–510. https://doi.org/10.1038/s41586-019-1666-5
[5]
Debjyoti Bhattacharjee, Abdullah Ash Saki, Mahabubul Alam, Anupam Chattopadhyay, and Swaroop Ghosh. 2019. MUQUT: Multi-Constraint Quantum Circuit Mapping on NISQ Computers: Invited Paper. In Proceedings of the 38th IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2019). 1–7. https://doi.org/10.1109/ICCAD45719.2019.8942132
[6]
Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard. 2019. Simulation of Quantum Circuits by Low-Rank Stabilizer Decompositions. Quantum, 3 (2019), 181. https://doi.org/10.22331/q-2019-09-02-181
[7]
Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. 2017. Roads Towards Fault-Tolerant Universal Quantum Computation. Nature, 549, 7671 (2017), 172–179. https://doi.org/10.1038/nature23460
[8]
Man-Duen Choi. 1975. Completely Positive Linear Maps on Complex Matrices. Linear Algebra Appl., 10, 3 (1975), 285 – 290. https://doi.org/10.1016/0024-3795(75)90075-0
[9]
Simon J. Devitt, William J. Munro, and Kae Nemoto. 2013. Quantum Error Correction for Beginners. Reports on Progress in Physics, 76, 7 (2013), 076001. https://doi.org/10.1088/0034-4885/76/7/076001
[10]
Stavros Efthymiou, Jack Hidary, and Stefan Leichenauer. 2019. TensorNetwork for Machine Learning. arxiv:1906.06329.
[11]
Glen Evenbly and Guifré Vidal. 2009. Algorithms for Entanglement Renormalization. Physical Review B, 79, 14 (2009), 144108. https://doi.org/10.1103/PhysRevB.79.144108
[12]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approximate Optimization Algorithm. arxiv:1411.4028.
[13]
Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. 2012. Surface Codes: Towards Practical Large-Scale Quantum Computation. Physical Review A, 86, 3 (2012), 032324. https://doi.org/10.1103/PhysRevA.86.032324
[14]
Robert M. Freund. 2004. Introduction to Semidefinite Programming (SDP). Massachusetts Institute of Technology, 8–11.
[15]
Vittorio Giovannetti, Simone Montangero, and Rosario Fazio. 2008. Quantum Multiscale Entanglement Renormalization Ansatz Channels. Physical Review Letters, 101, 18 (2008), 180503. https://doi.org/10.1103/PhysRevLett.101.180503
[16]
Daniel Gottesman. 2010. An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation. In Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics. 68, 13–58.
[17]
Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. 1989. Going Beyond Bell’s Theorem. In Bell’s theorem, quantum theory and conceptions of the universe. 69–72. https://doi.org/10.1007/978-94-017-0849-4_10
[18]
Mauricio Gutiérrez, Conor Smith, Livia Lulushi, Smitha Janardan, and Kenneth R. Brown. 2016. Errors and Pseudothresholds for Incoherent and Coherent Noise. Physical Review A, 94, 4 (2016), 042338. https://doi.org/10.1103/PhysRevA.94.042338
[19]
Mauricio Gutiérrez, Lukas Svec, Alexander Vargo, and Kenneth R. Brown. 2013. Approximation of Realistic Errors by Clifford Channels and Pauli Measurements. Physical Review A, 87, 3 (2013), 030302. https://doi.org/10.1103/PhysRevA.87.030302
[20]
Karen A. Hallberg. 2006. New Trends in Density Matrix Renormalization. Advances in Physics, 55, 5-6 (2006), 477–526. https://doi.org/10.1080/00018730600766432
[21]
Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum Circuits. Proceedings of the ACM on Programming Languages, 5, POPL (2021), 1–29. https://doi.org/10.1145/3434318
[22]
Mark Hillery, Vladimír Bužek, and André Berthiaume. 1999. Quantum Secret Sharing. Physical Review A, 59, 3 (1999), 1829. https://doi.org/10.1103/PhysRevA.59.1829
[23]
Mark Howard and Earl Campbell. 2017. Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. Physical Review Letters, 118, 9 (2017), 090501. https://doi.org/10.1103/PhysRevLett.118.090501
[24]
Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu. 2019. Quantitative Robustness Analysis of Quantum Programs. Proceeding of the ACM on Programming Languages, 3, POPL (2019), 31:1–31:29. https://doi.org/10.1145/3290344
[25]
2016. IBM-Q Experience. https://www.research.ibm.com/ibm-q/
[26]
Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret Martonosi. 2015. ScaffCC: Scalable Compilation and Analysis of Quantum Programs. Parallel Comput., 45 (2015), 2–17. https://doi.org/10.1016/j.parco.2014.12.001
[27]
Jacob Jordan, Roman Orús, Guifre Vidal, Frank Verstraete, and J. Ignacio Cirac. 2008. Classical Simulation of Infinite-size Quantum Lattice Systems in Two Spatial Dimensions. Physical Review Letters, 101, 25 (2008), 250602. https://doi.org/10.1103/PhysRevLett.101.250602
[28]
Emanuel Knill. 2005. Quantum Computing with Realistically Noisy Devices. Nature, 434, 7029 (2005), 39–44. https://doi.org/10.1038/nature03350
[29]
Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and David G. Cory. 2013. Modeling Quantum Noise for Efficient Testing of Fault-Tolerant Circuits. Physical Review A, 87, 1 (2013), 012324. https://doi.org/10.1103/PhysRevA.87.012324
[30]
Nancy Makri and Dmitrii E. Makarov. 1995. Tensor Propagator for Iterative Quantum Time Evolution of Reduced Density Matrices. I. Theory. The Journal of Chemical Physics, 102, 11 (1995), 4600–4610. https://doi.org/10.1063/1.469508
[31]
Andrea Mari and Jens Eisert. 2012. Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient. Physical Review Letters, 109, 23 (2012), 230503. https://doi.org/10.1103/PhysRevLett.109.230503
[32]
Frank Mueller, Greg Byrd, and Patrick Dreher. 2020. Programming Quantum Computers: A Primer with IBM Q and D-Wave Exercises. https://sites.google.com/ncsu.edu/qc-tutorial
[33]
Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. In Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2019). 1015–1029. https://doi.org/10.1145/3297858.3304075
[34]
Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511976667
[35]
Hakop Pashayan, Stephen D. Bartlett, and David Gross. 2020. From Estimation of Quantum Probabilities to Simulation of Quantum Circuits. Quantum, 4 (2020), 223. https://doi.org/10.22331/q-2020-01-13-223
[36]
Roger Penrose. 1971. Applications of Negative Dimensional Tensors. Combinatorial mathematics and its applications, 1 (1971), 221–244. https://doi.org/10.1145/2049706.2049708
[37]
David Perez-Garcia, Frank Verstraete, Michael M. Wolf, and J. Ignacio Cirac. 2007. Matrix Product State Representations. Quantum Information & Computation, 7, 5 (2007), 401–430. https://doi.org/10.26421/qic7.5-6-1
[38]
Marco Piani, Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. 2006. Properties of Quantum Nonsignaling Boxes. Physical Review A, 74, 1 (2006), 012305. https://doi.org/10.1103/PhysRevA.74.012305
[39]
Martin B. Plbnio and Shashank Virmani. 2007. An Introduction to Entanglement Measures. Quantum Information & Computation, 7, 1 (2007), 1–51.
[40]
John Preskill. 1998. Fault-Tolerant Quantum Computation. In Introduction to Quantum Computation and Information. 213–269. https://doi.org/10.1142/9789812385253_0008
[41]
John Preskill. 1998. Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology, 16 (1998), 10.
[42]
John Preskill. 1998. Reliable Quantum Computers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 1969 (1998), 385–410.
[43]
John Preskill. 2018. Quantum Computing in the NISQ Era and Beyond. Quantum, 2 (2018), 79. https://doi.org/10.22331/q-2018-08-06-79
[44]
Google AI Quantum. 2020. Hartree-Fock on a Superconducting Qubit Quantum Computer. Science, 369, 6507 (2020), 1084–1089. https://doi.org/10.1126/science.abb9811
[45]
Robert Raussendorf, Juani Bermejo-Vega, Emily Tyhurst, Cihan Okay, and Michael Zurel. 2020. Phase-Space-Simulation Method for Quantum Computation with Magic States on Qubits. Physical Review A, 101, 1 (2020), 012350. https://doi.org/10.1103/PhysRevA.101.012350
[46]
Ulrich Schollwöck. 2005. The Density-Matrix Renormalization Group. Reviews of Modern Physics, 77, 1 (2005), 259–315. https://doi.org/10.1103/RevModPhys.77.259
[47]
Yunong Shi, Runzhou Tao, Xupeng Li, Ali Javadi-Abhari, Andrew W. Cross, Frederic T. Chong, and Ronghui Gu. 2019. CertiQ: A Mostly-Automated Verification of a Realistic Quantum Compiler. arxiv:1908.08963.
[48]
Edwin Stoudenmire and David J. Schwab. 2016. Supervised Learning with Tensor Networks. In Advances in Neural Information Processing Systems. 29, 4799–4807.
[49]
Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. 2017. Colloquium: Quantum Coherence as a Resource. Reviews of Modern Physics, 89, 4 (2017), 041003. https://doi.org/10.1103/RevModPhys.89.041003
[50]
Martin Suchara, John Kubiatowicz, Arvin I. Faruque, Frederic T. Chong, Ching-Yi Lai, and Gerardo Paz. 2013. QuRE: The Quantum Resource Estimator Toolbox. In Proceedings of the 31st IEEE International Conference on Computer Design (ICCD 2013). 419–426.
[51]
Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu. 2021. Gleipnir: Toward Practical Error Analysis for Quantum Programs (Extended Version). arxiv:2104.06349.
[52]
Victor Veitch, Christopher Ferrie, David W. Gross, and Joseph Emerson. 2012. Negative Quasi-Probability as a Resource for Quantum Computation. New Journal of Physics, 14, 11 (2012), 113011. https://doi.org/10.1088/1367-2630/15/3/039502
[53]
Victor Veitch, S. A. Hamed Mousavian, Daniel Gottesman, and Joseph Emerson. 2014. The Resource Theory of Stabilizer Quantum Computation. New Journal of Physics, 16, 1 (2014), 013009. https://doi.org/10.1088/1367-2630/16/1/013009
[54]
Victor Veitch, Nathan Wiebe, Christopher Ferrie, and Joseph Emerson. 2013. Efficient Simulation Scheme for a Class of Quantum Optics Experiments with Non-Negative Wigner Representation. New Journal of Physics, 15, 1 (2013), 013037. https://doi.org/10.1088/1367-2630/15/1/013037
[55]
Frank Verstraete, Valentin Murg, and J. Ignacio Cirac. 2008. Matrix Product States, Projected Entangled Pair States, and Variational Renormalization Group Methods for Quantum Spin Systems. Advances in Physics, 57, 2 (2008), 143–224. https://doi.org/10.1080/14789940801912366
[56]
Guifré Vidal. 2003. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Physical Review Letters, 91, 14 (2003), 147902. https://doi.org/10.1103/PhysRevLett.91.147902
[57]
Guifré Vidal. 2008. Class of Quantum Many-Body States That Can Be Efficiently Simulated. Physical Review Letters, 101, 11 (2008), 110501. https://doi.org/10.1103/PhysRevLett.101.110501
[58]
Joel J. Wallman and Joseph Emerson. 2016. Noise Tailoring for Scalable Quantum Computation via Randomized Compiling. Physical Review A, 94, 5 (2016), 052325. https://doi.org/10.1103/PhysRevA.94.052325
[59]
Joel J. Wallman and Steven T. Flammia. 2014. Randomized Benchmarking with Confidence. New Journal of Physics, 16, 10 (2014), 103032. https://doi.org/10.1088/1367-2630/18/7/079501
[60]
Xin Wang, Mark M. Wilde, and Yuan Su. 2019. Quantifying the Magic of Quantum Channels. New Journal of Physics, 21, 10 (2019), 103002. https://doi.org/10.1088/1367-2630/ab451d
[61]
John Watrous. 2013. Simpler Semidefinite Programs for Completely Bounded Norms. Chicago Journal OF Theoretical Computer Science, 8 (2013), 1–19. https://doi.org/10.4086/cjtcs.2013.008
[62]
Andreas J. Winter and Dong Yuan Yang. 2016. Operational Resource Theory of Coherence. Physical Review Letters, 116, 12 (2016), 120404. https://doi.org/10.1103/PhysRevLett.116.120404
[63]
Christopher J. Wood, Jacob D. Biamonte, and David G. Cory. 2011. Tensor Networks and Graphical Calculus for Open Quantum Systems. arxiv:1111.6950.
[64]
Mingsheng Ying. 2016. Foundations of Quantum Programming. Morgan Kaufmann. https://doi.org/10.1016/c2014-0-02660-3
[65]
Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. 2017. Invariants of Quantum Programs: Characterisations and Generation. ACM SIGPLAN Notices, 52, 1 (2017), 818–832. https://doi.org/doi.org/10.1145/3093333.3009840
[66]
Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An Applied Quantum Hoare Logic. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). 1149–1162. https://doi.org/10.1145/3314221.3314584

Cited By

View all
  • (2024)Delta Debugging for Property-Based Regression Testing of Quantum ProgramsProceedings of the 5th ACM/IEEE International Workshop on Quantum Software Engineering10.1145/3643667.3648219(1-8)Online publication date: 16-Apr-2024
  • (2024)MorphQPV: Exploiting Isomorphism in Quantum Programs to Facilitate Confident VerificationProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3620666.3651360(671-688)Online publication date: 27-Apr-2024
  • (2023)Automating NISQ Application Design with Meta Quantum Circuits with Constraints (MQCC)ACM Transactions on Quantum Computing10.1145/35793694:3(1-29)Online publication date: 8-Apr-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation
June 2021
1341 pages
ISBN:9781450383912
DOI:10.1145/3453483
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 June 2021

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. approximate computing
  2. error analysis
  3. quantum programming

Qualifiers

  • Research-article

Funding Sources

Conference

PLDI '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 406 of 2,067 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)223
  • Downloads (Last 6 weeks)38
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Delta Debugging for Property-Based Regression Testing of Quantum ProgramsProceedings of the 5th ACM/IEEE International Workshop on Quantum Software Engineering10.1145/3643667.3648219(1-8)Online publication date: 16-Apr-2024
  • (2024)MorphQPV: Exploiting Isomorphism in Quantum Programs to Facilitate Confident VerificationProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3620666.3651360(671-688)Online publication date: 27-Apr-2024
  • (2023)Automating NISQ Application Design with Meta Quantum Circuits with Constraints (MQCC)ACM Transactions on Quantum Computing10.1145/35793694:3(1-29)Online publication date: 8-Apr-2023
  • (2022)Bugs in Quantum computing platforms: an empirical studyProceedings of the ACM on Programming Languages10.1145/35273306:OOPSLA1(1-27)Online publication date: 29-Apr-2022
  • (2022)On incorrectness logic for Quantum programsProceedings of the ACM on Programming Languages10.1145/35273166:OOPSLA1(1-28)Online publication date: 29-Apr-2022
  • (2022)Twist: sound reasoning for purity and entanglement in Quantum programsProceedings of the ACM on Programming Languages10.1145/34986916:POPL(1-32)Online publication date: 12-Jan-2022
  • (2021)A Repeated Mistake is a Choice: Considering Security Issues and Risks in Quantum Computing from Scratch14th International Conference on Computational Intelligence in Security for Information Systems and 12th International Conference on European Transnational Educational (CISIS 2021 and ICEUTE 2021)10.1007/978-3-030-87872-6_16(156-166)Online publication date: 22-Sep-2021

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media