Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Pattern Matching and the Analysis of Damaged Ancient Objects: The Case of the Column Drum

Published: 20 September 2016 Publication History

Abstract

We describe a common problem in the curation and analysis of archaeological materials: restoring the orientation and dimensions of damaged objects. Our focus is a common architectural type in Mediterranean sites, the Doric column drum, which we investigate at one of the earliest Doric temples in the Greek world, the Hera temple at Olympia. The 3D modeling and analysis of this building by the Digital Architecture Project since 2013 has revealed new insights into the construction history of its stone colonnades. This paper concerns the analysis of the 3D models of the in situ material, using the almost 100 fallen drums and capitals to reconstruct the colonnade digitally. In order to accomplish this, we propose two novel methods for training the machine to estimate the dimensions of a fragmentary column drum. One approach is a modification of ICP, where the fragment is compared to an ideal model of an intact drum, which is resized iteratively until concluding with a satisfactory fit. Another approach recasts the scan data into polar coordinates and uses RANSAC to identify the exterior profiles of the piece and remove points likely to belong to damaged areas. The filtered points are then examined by the algorithm to estimate the radii and taper of the drum. Besides saving a great deal of time in the field, these methods are also accurate to within 0.2% of the total radius for well-preserved material, and 1% for even the most fragmentary drums at Olympia. These data have allowed the digital reconstruction of 80% of the displaced drums and all of the capitals from the temple. Our algorithms can be used to measure any fluted column drums, and we discuss the potential value of our approach for other categories of archaeological artifacts.

References

[1]
David Adan-Bayewitz, Avshalom Karasik, Uzy Smilansky, Frank Asaro, Robert D. Giauque, and R. Lavidor. 2009. Differentiation of ceramic chemical element composition and vessel morphology at a pottery production center in Roman Galilee. J. Archaeol. Science 36, 2517--2530.
[2]
Anthousis Andreadis, Robert Gregor, Ivan Sipiran, Pavlos Mavridis, Georgios Papaioannou, Tobias Schreck. 2015. Fractured 3D object restoration and completion. ACM Siggraph, Poster Proceedings, 2015, (SIGGRAPH’15).
[3]
Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9, 509--517.
[4]
Paul J. Besl and Neil D. McKay. 1992. Method for registration of 3-D shapes. Proc. SPIE 1611, Sensor Fusion IV: Control Paradigms and Data Structures, 586 (April 30, 1992).
[5]
Silvia Biasotti, Andrea Cerri, Bianca Falcidieno, and Michela Spagnuolo. 2015. 3D artifacts similarity based on the concurrent evaluation of heterogenous properties. ACM J. Comput. Cult. Herit. 8, 4 (August 2015), Article 19, 19.
[6]
Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: An open-source mesh processing tool. In Eurographics 6th Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and Ugo Erra (Eds.). Geneva, Eurographics Society, 129--36.
[7]
Wilhelm Dörpfeld. 1892. Das Heraion. In Olympia. Die Ergebnisse der von dem Deutschen Reich Veranstalteten Ausgrabung. Textband II: Die Baudenkmäler, Ernst Curtius and Friedrich Adler (Eds.). A. Asher, Berlin, 27--36.
[8]
Wilhelm Dörpfeld. 1935. Alt-Olympia. Untersuchungen und Ausgrabungen zur Geschichte des ältesten Heiligtums von Olympia und der älteren Griechischen Kunst, 1, E.S. Mittler & Sohn, Berlin.
[9]
Martin A. Fischler and Robert C. Bolles. 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6, 381--395.
[10]
Bernard Frischer and Anastasia Dakouri-Hild (Eds.). 2008. Beyond Illustration: 2D and 3D Digital Technologies as Tools for Discovery in Archaeology. Archaeopress, Oxford.
[11]
Thomas Funkhouser, Hijung Shin, Corey Toler-Franklin, Antonio G. Castañeda, Benedict J. Brown, David Dobkin, Szymon Rusinkiewicz, and Tim Weyrich. 2011. Learning how to match fresco fragments. ACM J. Comput. Cult. Herit. 4, 2 (November 2011), Article 7, 13.
[12]
Aaron Gidding, Yuma Matsui, Thomas E. Levy, Tom DeFanti, and Falko Kuester. 2013. ArchaeoSTOR: A data curation system for research on the archeological frontier. Future Gener. Comput. Syst. 29, 8, 2117--2127.
[13]
Ayelet Gilboa, Avshalom Karasik, Ilan Sharon, and Uzy Smilansky. 2004. Towards computerized typology and classification of ceramics. J. Archaeol. Science 31, 681--694.
[14]
Christian Hörr and Guido Brunnet. 2008. Similarity estimation on ancient vessels. In GraphiCon 2008, Moscow State University. 94--100.
[15]
Christian Hörr, Elisabeth Lindinger, and Guido Brunnet. 2014. Machine learning based typology development in archaeology. ACM J. Comput. Cult. Herit. 7, 1, Article 2, 23.
[16]
Avshalom Karasik and Uzy Smilansky. 2008. 3D scanning technology as a standard archaeological tool for pottery analysis: Practice and theory. J. Archaeol. Science 35, 1148--1168.
[17]
Georg Kawerau. 1905. Bericht über den Wiederaufbau zweier Säulen des Heraions in Olympia. Mitt. Kais. Dtsch. Archäol. Inst., Athen. Abt. 30, 157--172.
[18]
Keith Kintigh. 2006. The promise and challenge of archaeological data integration. Am. Antiq. 71, 3, 567--578.
[19]
David Koller, Bernard Frischer, and Greg Humphreys. Research challenges for digital archives of 3D cultural heritage models. ACM J. Comput. Cult. Herit. 2, 3, Article 7, 17.
[20]
D. Koller and M. Levoy. 2006. Computer-aided reconstruction and new matches in the Forma Urbis Romae. Bull. Comm. Archeol. Comunale Roma, Suppl. 15, 103--125.
[21]
Anestis Koutsoudis, George Pavlidis, Vassiliki Liami, Despoina Tsiafakis, and Christodoulos Chamzas. 2010. 3D pottery content-based retrieval based on pose normalization and segmentation. J. Cult. Herit. 11, 329--338.
[22]
Anestis Koutsoudis, Blaž Vidmar, and Fotis Arnaoutoglou. 2013. Performance evaluation of a multi-image 3D reconstruction software on a low-feature artefact. J. Archaeol. Science 40, 4450--4456.
[23]
Stephan Lehmann and Andreas Gutsfeld. 2013. Spolien und Spolisation im spätantiken Olympia. In Sanktuar und Ritual. Heilige Plätze im Archäologischen Befund. FORSCHUNGSCLUSTER 4 Heiligtümer: Gestalt und Ritual, Kontinuität und Veränderung, Iris Gerlach and Dietrich Raue (Eds.). Marie Leidorf, Rahden/Westf., 91--104.
[24]
Marcos Llobera. 2011. Archaeological visualization: Towards an archaeological information science (AISc). J. Archaeol. Method Theory 18, 3, 193--223.
[25]
Alfred Mallwitz. 1972a. Olympia und Seine Bauten. Prestel, Munich.
[26]
Alfred Mallwitz. 1972b. Zu den Arbeiten im Heiligtum von Olympia während der Jahre 1967 bis 1971. Archaiol. Delt. 27, Chr. B’1, 272--280.
[27]
Jari Pakkanen. 1998. The Temple of Athena Alea at Tegea. A Reconstruction of the Peristyle Column. University of Helsinki.
[28]
Gregorio Palmas, Nico Pietroni, Paolo Cignoni, and Roberto Scopigno. 2013. A computer-assisted constraint-based system for assembling fragmented objects. In Digital Heritage International Congress (DigitalHeritage) 2013, Vol. 1, Alonzo C. Addison, Gabriele Guidi, Livio De Luca, and Sofia Pescarin (Eds.). IEEE, Marseilles, 529--536.
[29]
Eric Psota and Philip Sapirstein. 2015. Inside-ICP and Geometric filling algorithms. https://github.com/psrg/drumfitting.
[30]
Philip Sapirstein. 2015. Photogrammetry as a tool for architectural analysis: The Digital Architecture Project at Olympia. In Archaeological Research in the Digital Age. Proceedings of the 1st Conference on Computer Applications and Quantitative Methods in Archaeology, Greek Chapter. Rethymno, Crete, March 6-8 2014, C. Papadopoulos, E. Paliou, A. Chrysanthi, E. Kotoula, and A. Sarris (Eds.). IMS-FORTH, Rethymno, 129--39.
[31]
Philip Sapirstein. 2016. The Columns of the Heraion at Olympia: Dörpfeld and early Doric architecture. Am. J. Archaeol. 120, 4, forthcoming.
[32]
David B. Skalak. 1994. Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Machine Learning, Proceedings of the Eleventh International Conference, Rutgers University, New Brunswick, NJ, USA, July 10-13, 1994, William W. Cohen and Haym Hirsh (Eds.). Cleveland, Morgan Kaufmann, 293--301.
[33]
Neil G. Smith, Avshalom Karasik, Tejaswini Narayanan, Eric S. Olson, Uzy Smilansky, and Thomas E. Levy. 2014. The pottery informatics query database: A new method for mathematic and quantitative analyses of large regional ceramic datasets. J. Archaeol. Method Theory 21, 1, 212--250.
[34]
Eduardo Vendrell-Vidal and Carlos Sánchez-Belenguer. 2014. A discrete approach for pairwise matching of archaeological fragments. ACM J. Comput. Cult. Herit. 7, 3, Article 15, 19.

Cited By

View all
  • (2024)A new approach to locate, characterise and restore in 3D polychromy of Apollo’s temple at Delphi (4th century B. C.).Digital Applications in Archaeology and Cultural Heritage10.1016/j.daach.2024.e00345(e00345)Online publication date: May-2024
  • (2023)Uncertainty in overturning of precariously balanced rocks due to basal contactEarthquake Engineering & Structural Dynamics10.1002/eqe.397052:14(4562-4581)Online publication date: 12-Jul-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal on Computing and Cultural Heritage
Journal on Computing and Cultural Heritage   Volume 9, Issue 3
November 2016
136 pages
ISSN:1556-4673
EISSN:1556-4711
DOI:10.1145/2999571
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 September 2016
Accepted: 01 March 2016
Revised: 01 January 2016
Received: 01 October 2015
Published in JOCCH Volume 9, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Greek architecture
  2. algorithmic measurement
  3. damaged artifacts
  4. digital reconstruction

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • University of Nebraska-Lincoln
  • Department of Art & Art History
  • Hixson-Lied College of Fine and Performing Arts
  • Center for Digital Research in the Humanities

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)17
  • Downloads (Last 6 weeks)4
Reflects downloads up to 25 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A new approach to locate, characterise and restore in 3D polychromy of Apollo’s temple at Delphi (4th century B. C.).Digital Applications in Archaeology and Cultural Heritage10.1016/j.daach.2024.e00345(e00345)Online publication date: May-2024
  • (2023)Uncertainty in overturning of precariously balanced rocks due to basal contactEarthquake Engineering & Structural Dynamics10.1002/eqe.397052:14(4562-4581)Online publication date: 12-Jul-2023

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media