Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2835776.2855089acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
abstract

Temporal Formation and Evolution of Online Communities

Published: 08 February 2016 Publication History

Abstract

Researchers have already studied the identification of online communities and the possible impact or influence relationships from several perspectives. For instance, communities of users that are formed based on shared relationships and topological similarities, or communities that consist of users that share similar content. However, little work has been done on detection of communities that simultaneously share topical and temporal similarities. Furthermore, these studies have not explored the causation relationship between the communities. Causation provides systematic explanation as to why communities are formed and helps to predict future communities. This proposal will address two main research questions: i) how can communities that share topical and temporal similarities be identified, and ii) how can causation relation between different online communities be detected and modelled. We model users' behaviour towards topics of interest through multivariate time series to identify like-minded communities. Further, we employ Granger's concept of causality to infer causation between detected communities from corresponding users' time series. Granger causality is the prominent approach in time series modelling and rests on a firm statistical foundation. We assess the proposed community detection methods through comparison with the state of the art and verify the causal model through its prediction accuracy.

Index Terms

  1. Temporal Formation and Evolution of Online Communities

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      WSDM '16: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining
      February 2016
      746 pages
      ISBN:9781450337168
      DOI:10.1145/2835776
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 08 February 2016

      Check for updates

      Author Tags

      1. causality
      2. community detection
      3. online social network

      Qualifiers

      • Abstract

      Funding Sources

      Conference

      WSDM 2016
      WSDM 2016: Ninth ACM International Conference on Web Search and Data Mining
      February 22 - 25, 2016
      California, San Francisco, USA

      Acceptance Rates

      WSDM '16 Paper Acceptance Rate 67 of 368 submissions, 18%;
      Overall Acceptance Rate 498 of 2,863 submissions, 17%

      Upcoming Conference

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 236
        Total Downloads
      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 25 Nov 2024

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media