Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2503210.2504563acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

20 petaflops simulation of proteins suspensions in crowding conditions

Published: 17 November 2013 Publication History

Abstract

We present performance results for the simulation of proteins suspensions in crowding conditions obtained with MUPHY, a computational platform for multi-scale simulations of real-life biofluidic problems. Previous versions of MUPHY have been used in the past for the simulation of blood flow through the human coronary arteries and DNA translocation across nanopores. The simulation exhibits excellent scalability up to 18, 000 K20X Nvidia GPUs and achieves almost 20 Petaflops of aggregate sustained performance with a peak performance of 27.5 Petaflops for the most intensive computing component. Those figures demonstrate once again the flexibility of MUPHY in simulating biofluidic phenomena, exploiting at their best the features of the architecture in use. Preliminary results were obtained in the present case on a completely different platform, the IBM Blue Gene/Q. The combination of novel mathematical models, computational algorithms, hardware technology, code tuning and parallelization techniques required to achieve these results are presented.

References

[1]
R. J. Ellis, A. P. Minton, Nature, 425, 27 (2003).
[2]
Y. Wang, C. Li, G. J. Pielak, J. Am. Chem. Soc., 132, 9392--9397 (2010).
[3]
R. Harada, Y. Sugita, M. Feig, J. Am. Chem. Soc. 134, 4842--4849 (2012).
[4]
F. Roosen-Runge, M. Hennig, F. Zhang, R. M. J. Jacobs, M. Sztucki, H. Schober, T. Seydel, F. Schreiber, Proc. Natl. Acad. Sci USA, 108, 11815--11820 (2011).
[5]
A. Korkut, W. A. Hendrickson, Proc. Natl. Acad. Sci. USA, 106 15667--15672 (2009). S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, J. Phys. Chem. B. 111 7812--7824 (2007). M. Neri, C. Anselmi, M. Cascella, A. Maritan, P. Carloni, Phys. REv. Lett. 95, 218102 (2005).
[6]
P. Derreumaux, N. Mousseau, J. Chem. Phys. 126, 025101 (2007).
[7]
M. Bernaschi, S. Melchionna, S. Succi et al., Comp. Phys. Comm., 180, 1495 (2009)
[8]
R. Benzi, S. Succi and M. Vergassola, Phys. Rep., 222, 145 (1992).
[9]
D. Moroni B. Rotenberg, J.-P. Hansen, S. Succi, S. Melchionna, Phys. Rev. E, 73, 066707 (2006).
[10]
S. Melchionna, Macromol. Theory Sim. 548--558 (2011).
[11]
S. Melchionna, J. Comput. Phys. 230, 3966 (2011).
[12]
S. Melchionna, M. Bernaschi, S. Succi et al, Comp. Phys. Comm., 181, 462 (2010).
[13]
U. Marini Bettolo Marconi, S. Melchionna, Langmuir, 28, 13727--13740 (2012).
[14]
M. Bernaschi, M. Bisson, M. Fatica, S. Melchionna, S. Succi, Comp. Phys. Comm. 184, 329--341 (2013).
[15]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, USA, (2001)
[16]
The OPEP force field is expressed as a sum of local, nonbonded, and hydrogen-bond terms. The short-range potential is of the form {EQUATION}, with bond, angular, improper dihedral harmonic and Ramachandran restraining potentials (where R, α, Ω, φ indicate the corresponding bond distances, angles, dihedrals and Ramachandran angles), respectively. The nonbonded interactions are of the form, {EQUATION}, involving 1--4 topological neighbors and generic atom pairs, where {EQUATION} is a Lennard-Jones potential. The interaction is complemented by a set of hydrogen bond and cooperative potential terms, involving pairs and quadruplets of labelled particles.
[17]
J. Rotne, S. Prager, J. Chem. Phys. 50, 4831 (1969).
[18]
U. Marini Bettolo Marconi, S. Melchionna, J. Chem. Phys. 126, 184109 (2007).
[19]
M. Bernaschi, M. Bisson, T. Endo, M. Fatica, S. Matsuoka, S. Melchionna, S. Succi, "Petaflop biofluidics simulations on a two million-core system", Gordon Bell Finalist. Proceedings of Supercomputing 2011, Seattle (U.S.A.) (2011).
[20]
A. Peters, S. Melchionna, E. Kaxiras, J. Latt, J. Sircar, M. Bernaschi, M. Bisson, S. Succi, "Multiscale simulation of cardiovascular flows on the IBM Bluegene/P: full heart-circulation system at near red-blood cell resolution", Gordon Bell Finalist. Proceedings of Supercomputing 2010, New Orleans (U.S.A), (2010).
[21]
M. Bernaschi, M. Fatica, S. Melchionna, S. Succi and E. Kaxiras, Concurrency and Computation: Practice and Experience, 22, 1 (2010).
[22]
"MAGMA: Matrix Algebra on GPU and Multicore Architectures", http://icl.cs.utk.edu/magma/index.html
[23]
K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, T. Spencer, International Conference on Parallel and Distributed Computing Systems, Dallas, TX, August 8--10, (2001).
[24]
http://oprofile.sourceforge.net.
[25]
C. Chambreau, J. Vetter, "mpiP: Lightweight, Scalable MPI Profiling", http://mpip.sourceforge.net/

Cited By

View all
  • (2023)Lattice Fluid Dynamics: Thirty-five Years Down the RoadComptes Rendus. Mécanique10.5802/crmeca.161350:S1(1-12)Online publication date: 11-Apr-2023
  • (2022)Development and performance of a HemeLB GPU code for human-scale blood flow simulationComputer Physics Communications10.1016/j.cpc.2022.108548(108548)Online publication date: Sep-2022
  • (2021)GPU Acceleration of the HemeLB Code for Lattice Boltzmann Simulations in Sparse Complex GeometriesIEEE Access10.1109/ACCESS.2021.30736679(61224-61236)Online publication date: 2021
  • Show More Cited By
  1. 20 petaflops simulation of proteins suspensions in crowding conditions

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SC '13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
      November 2013
      1123 pages
      ISBN:9781450323789
      DOI:10.1145/2503210
      • General Chair:
      • William Gropp,
      • Program Chair:
      • Satoshi Matsuoka
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 17 November 2013

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      SC13
      Sponsor:

      Acceptance Rates

      SC '13 Paper Acceptance Rate 91 of 449 submissions, 20%;
      Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)5
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 21 Sep 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Lattice Fluid Dynamics: Thirty-five Years Down the RoadComptes Rendus. Mécanique10.5802/crmeca.161350:S1(1-12)Online publication date: 11-Apr-2023
      • (2022)Development and performance of a HemeLB GPU code for human-scale blood flow simulationComputer Physics Communications10.1016/j.cpc.2022.108548(108548)Online publication date: Sep-2022
      • (2021)GPU Acceleration of the HemeLB Code for Lattice Boltzmann Simulations in Sparse Complex GeometriesIEEE Access10.1109/ACCESS.2021.30736679(61224-61236)Online publication date: 2021
      • (2018)Lattice Boltzmann Method for Sparse GeometriesAnalysis and Applications of Lattice Boltzmann Simulations10.4018/978-1-5225-4760-0.ch005(152-187)Online publication date: 2018
      • (2018)Sparse Geometries Handling in Lattice Boltzmann Method Implementation for Graphic ProcessorsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2018.281023729:8(1865-1878)Online publication date: 1-Aug-2018
      • (2016)Multiscale simulation of molecular processes in cellular environmentsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rsta.2016.0225374:2080(20160225)Online publication date: 3-Oct-2016
      • (2015)The in-silico lab-on-a-chipProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/2807591.2807677(1-12)Online publication date: 15-Nov-2015
      • (2015)Accelerated application developmentComputers and Electrical Engineering10.1016/j.compeleceng.2015.04.00846:C(123-138)Online publication date: 1-Aug-2015
      • (2015)Formal Metrics for Large-Scale Parallel PerformanceHigh Performance Computing10.1007/978-3-319-20119-1_34(488-496)Online publication date: 20-Jun-2015

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media