Nothing Special   »   [go: up one dir, main page]

skip to main content
10.1145/2578726.2578770acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
tutorial

Unsupervised Distance Learning By Reciprocal kNN Distance for Image Retrieval

Published: 01 April 2014 Publication History

Abstract

This paper presents a novel unsupervised learning approach that takes into account the intrinsic dataset structure, which is represented in terms of the reciprocal neighborhood references found in different ranked lists. The proposed Reciprocal kNN Distance defines a more effective distance between two images, and is used to improve the effectiveness of image retrieval systems. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors. The proposed approach is also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of proposed approach. The Reciprocal kNN Distance yields better results in terms of effectiveness than various state-of-the-art algorithms.

References

[1]
N. Arica and F. T. Y. Vural. BAS: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognition Letters, 24(9-10):1627--1639, 2003.
[2]
R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley Longman, 1999.
[3]
X. Bai, B. Wang, X. Wang, W. Liu, and Z. Tu. Co-transduction for shape retrieval. In ECCV, volume 3, pages 328--341, 2010.
[4]
S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. PAMI, 24(4):509--522, 2002.
[5]
P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover, 1966.
[6]
Y. Chen, X. Li, A. Dick, and R. Hill. Ranking consistency for image matching and object retrieval. Pattern Recognition, 47(3):1349--1360, 2014.
[7]
G. V. Cormack, C. L. A. Clarke, and S. Buettcher. Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In ACM SIGIR, pages 758--759, 2009.
[8]
R. da S. Torres and A. X. Falcão. Content-Based Image Retrieval: Theory and Applications. Revista de Informática Teórica e Aplicada, 13(2):161--185, 2006.
[9]
R. da S. Torres and A. X. Falcão. Contour Salience Descriptors for Effective Image Retrieval and Analysis. Image and Vision Computing, 25(1):3--13, 2007.
[10]
R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 40(2):5:1--5:60, 2008.
[11]
T. Deselaers, D. Keysers, and H. Ney. Features for image retrieval: an experimental comparison. Information Retrieval, 11(2):77--107, 2008.
[12]
Z. Ghahramani. Unsupervised Learning. In Advanced Lectures on Machine Learning, pages 72--112. 2004.
[13]
R. Gopalan, P. Turaga, and R. Chellappa. Articulation-invariant representation of non-planar shapes. In ECCV'2010, volume 3, pages 286--299, 2010.
[14]
C.-B. Huang and Q. Liu. An orientation independent texture descriptor for image retrieval. In ICCCAS 2007, pages 772--776, 2007.
[15]
J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image indexing using color correlograms. In CVPR, pages 762--768, 1997.
[16]
H. Jegou, C. Schmid, H. Harzallah, and J. Verbeek. Accurate image search using the contextual dissimilarity measure. PAMI, 32(1):2--11, 2010.
[17]
J. Jiang, B. Wang, and Z. Tu. Unsupervised metric learning by self-smoothing operator. In ICCV, pages 794--801, 2011.
[18]
P. Kontschieder, M. Donoser, and H. Bischof. Beyond pairwise shape similarity analysis. In ACCV, pages 655--666, 2009.
[19]
V. Kovalev and S. Volmer. Color co-occurence descriptors for querying-by-example. In International Conference on Multimedia Modeling, page 32, 1998.
[20]
S. Lafon and A. B. Lee. Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization. PAMI, 28(9):1393--1403, 2006.
[21]
L. J. Latecki, R. Lakmper, and U. Eckhardt. Shape descriptors for non-rigid shapes with a single closed contour. In CVPR, pages 424--429, 2000.
[22]
B. Leibe and B. Schiele. Analyzing appearance and contour based methods for object categorization. In CVPR, volume 2, pages II--409--15 vol.2, 2003.
[23]
J. Lewis, S. Ossowski, J. Hicks, M. Errami, and H. R. Garner. Text similarity: an alternative way to search medline. Bioinformatics, 22(18):2298--2304, 2006.
[24]
H. Ling and D. W. Jacobs. Shape classification using the inner-distance. PAMI, 29(2):286--299, 2007.
[25]
H. Ling, X. Yang, and L. J. Latecki. Balancing deformability and discriminability for shape matching. In ECCV, volume 3, pages 411--424, 2010.
[26]
Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma. A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40(1):262--282, 2007.
[27]
B. Manjunath, J.-R. Ohm, V. Vasudevan, and A. Yamada. Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11(6):703--715, 2001.
[28]
T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI, 24(7):971--987, 2002.
[29]
D. C. G. Pedronette and R. da S. Torres. Shape retrieval using contour features and distance optmization. In VISAPP, volume 1, pages 197--202, 2010.
[30]
D. C. G. Pedronette and R. da S. Torres. Exploiting clustering approaches for image re-ranking. Journal of Visual Languages and Computing, 22(6):453--466, 2011.
[31]
D. C. G. Pedronette and R. da S. Torres. Exploiting pairwise recommendation and clustering strategies for image re-ranking. Information Sciences, 207:19--34, 2012.
[32]
D. C. G. Pedronette and R. da S. Torres. Image re-ranking and rank aggregation based on similarity of ranked lists. Pattern Recognition, 46(8):2350--2360, 2013.
[33]
D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. van Gool. Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. In CVPR, pages 777 --784, june 2011.
[34]
T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and H. Li. Global ranking using continuous conditional random fields. In NIPS, pages 1281--1288, 2008.
[35]
S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3. In TREC, pages 109--126, 1994.
[36]
R. O. Stehling, M. A. Nascimento, and A. X. Falcão. A compact and efficient image retrieval approach based on border/interior pixel classification. In CIKM, pages 102--109, 2002.
[37]
M. J. Swain and D. H. Ballard. Color indexing. International Journal on Computer Vision, 7(1): 11--32, 1991.
[38]
B. Tao and B. W. Dickinson. Texture recognition and image retrieval using gradient indexing. JVCIR, 11(3):327--342, 2000.
[39]
J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319--2323, 2000.
[40]
Z. Tu and A. L. Yuille. Shape matching and recognition - using generative models and informative features. In ECCV, pages 195--209, 2004.
[41]
J. van de Weijer and C. Schmid. Coloring local feature extraction. In ECCV, pages 334--348, 2006.
[42]
C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann, London, 1979.
[43]
B. Wang, J. Jiang, W. Wang, Z.-H. Zhou, and Z. Tu. Unsupervised metric fusion by cross diffusion. In CVPR, pages 3013 --3020, 2012.
[44]
A. Williams and P. Yoon. Content-based image retrieval using joint correlograms. MTAP, 34(2):239--248, August 2007.
[45]
L. Wolf, T. Hassner, and Y. Taigman. Similarity scores based on background samples. In ACCV'09, pages 88--97, 2009.
[46]
P. Wu, B. S. Manjunanth, S. D. Newsam, and H. D. Shin. A texture descriptor for image retrieval and browsing. In CBAIVL, pages 3--7, 1999.
[47]
X. Yang, X. Bai, L. J. Latecki, and Z. Tu. Improving shape retrieval by learning graph transduction. In ECCV, volume 4, pages 788--801, 2008.
[48]
X. Yang, S. Koknar-Tezel, and L. J. Latecki. Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In CVPR, pages 357--364, 2009.
[49]
X. Yang, L. Prasad, and L. Latecki. Affinity learning with diffusion on tensor product graph. PAMI, PP(99):1, 2012.
[50]
H. P. Young. An axiomatization of borda's rule. Journal of Economic Theory, 9(1):43--52, 1974.
[51]
S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas. Query specific fusion for image retrieval. In ECCV, pages 660--673, 2012.

Cited By

View all
  • (2024)Unsupervised affinity learning based on manifold analysis for image retrieval: A surveyComputer Science Review10.1016/j.cosrev.2024.10065753(100657)Online publication date: Aug-2024
  • (2021)Efficient Rank-Based Diffusion Process with Assured ConvergenceJournal of Imaging10.3390/jimaging70300497:3(49)Online publication date: 8-Mar-2021
  • (2020)A unified model for accelerating unsupervised iterative re‐ranking algorithmsConcurrency and Computation: Practice and Experience10.1002/cpe.570232:14Online publication date: 3-Mar-2020
  • Show More Cited By

Index Terms

  1. Unsupervised Distance Learning By Reciprocal kNN Distance for Image Retrieval

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      ICMR '14: Proceedings of International Conference on Multimedia Retrieval
      April 2014
      564 pages
      ISBN:9781450327824
      DOI:10.1145/2578726
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      In-Cooperation

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 April 2014

      Check for updates

      Author Tags

      1. Content-based image retrieval
      2. Unsupervised distance learning

      Qualifiers

      • Tutorial
      • Research
      • Refereed limited

      Conference

      ICMR '14
      ICMR '14: International Conference on Multimedia Retrieval
      April 1 - 4, 2014
      Glasgow, United Kingdom

      Acceptance Rates

      ICMR '14 Paper Acceptance Rate 21 of 111 submissions, 19%;
      Overall Acceptance Rate 254 of 830 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)6
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 09 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Unsupervised affinity learning based on manifold analysis for image retrieval: A surveyComputer Science Review10.1016/j.cosrev.2024.10065753(100657)Online publication date: Aug-2024
      • (2021)Efficient Rank-Based Diffusion Process with Assured ConvergenceJournal of Imaging10.3390/jimaging70300497:3(49)Online publication date: 8-Mar-2021
      • (2020)A unified model for accelerating unsupervised iterative re‐ranking algorithmsConcurrency and Computation: Practice and Experience10.1002/cpe.570232:14Online publication date: 3-Mar-2020
      • (2019)Unsupervised Effectiveness Estimation Through Intersection of Ranking ReferencesComputer Analysis of Images and Patterns10.1007/978-3-030-29891-3_21(231-244)Online publication date: 3-Sep-2019
      • (2018)Accurate Image Retrieval With Unsupervised 2-Stage k-NN Re-RankingComputer Vision10.4018/978-1-5225-5204-8.ch072(1726-1745)Online publication date: 2018
      • (2018)Enhance Neighbor Reversibility in Subspace Learning for Image RetrievalIEEE Journal of Selected Topics in Signal Processing10.1109/JSTSP.2018.287958112:6(1338-1350)Online publication date: Dec-2018
      • (2017)GEO matching regionsMultimedia Tools and Applications10.1007/s11042-016-3834-z76:14(15377-15411)Online publication date: 1-Jul-2017
      • (2016)Accurate Image Retrieval with Unsupervised 2-Stage k-NN Re-RankingInternational Journal of Multimedia Data Engineering & Management10.4018/IJMDEM.20160101037:1(41-59)Online publication date: 1-Jan-2016
      • (2016)Unsupervised Distance Learning for Plant Species IdentificationIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing10.1109/JSTARS.2016.26083589:12(5325-5338)Online publication date: Dec-2016
      • (2016)A correlation graph approach for unsupervised manifold learning in image retrieval tasksNeurocomputing10.1016/j.neucom.2016.03.081208:C(66-79)Online publication date: 5-Oct-2016
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media