Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method

Published: 01 September 2010 Publication History

Abstract

The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. The performance of the method strongly depends on the dimension of the projection subspace used at each restart. In this article, we propose an objective function to quantify the effectiveness of the selection of subspace dimension, and then introduce an adaptive scheme to dynamically select the dimension to optimize the performance. We have developed an open-source software package a--TRLan to include this adaptive scheme in the TRLan method. When applied to calculate the electronic structure of quantum dots, a--TRLan runs up to 2.3x faster than a state-of-the-art preconditioned conjugate gradient eigensolver.

References

[1]
}}Calvetti, D., Reichel, L., and Sorensen, D. 1994. An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electro. Trans. Numer. Anal. 2, 1--21.
[2]
}}Canning, A., Wang, L. W., Williamson, A., and Zunger, A. 2000. Parallel empirical pseudopotential electronic structure calculations for million atom systems. J. Comput. Phys. 160, 1, 29--41.
[3]
}}Crouzeix, M., Philippe, B., and Sadkane, M. 1994. The Davidson method. SIAM J. Sci. Comput. 15, 62--76.
[4]
}}Demmel, J. W. 1997. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA.
[5]
}}Lanczos, C. 1950. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45, 255--281.
[6]
}}Lehoucq, R., Sorensen, D., and Yang, C. 1998. ARPACK Users Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA. Software http://www.caam.rice.edu/software/ARPACK/.
[7]
}}Li, J. and Wang, L. 2004. First principle study of core/shell structure quantum dots. Appl. Phys. Lett. 84, 18, 2648--3650.
[8]
}}Morgan, P. B. 1996. On restarting the Arnoldi method for large nonsymmetric eigenvalule problems. Math. Comput. 65, 215, 1213--1230.
[9]
}}Parlett, B. N. 1998. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics. SIAM, Philadelphia, PA.
[10]
}}Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. 1992. Iterative minimization techniques for ab-initio total energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045--1097.
[11]
}}Saad, Y. 1993. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester, UK.
[12]
}}Schrier, J. and Wang, L. 2006. A systematic first principles study of nanocrystal quantum-dot quantum wells. Phys. Rev. B 73, 245332--7.
[13]
}}Sorensen, D. 1992. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Mat. Anal. Appl. 13, 1, 357--385.
[14]
}}Stathopoulos, A. and McCombs, J. R. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues. SIAM J. Sci. Comput. 29, 5, 2162--2188.
[15]
}}Stathopoulos, A., Saad, Y., and Wu, K. 1998. Dynamic thick restarting of the Davidson and the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 227--245.
[16]
}}Vömel, C., Tomov, S. Z., Marques, O. A., Canning, A., Wang, L., and Dongarra, J. J. 2008. State-of-the-Art eigensolvers for electronic structure calculation of large scale nano-systems. J. Comput. Phys. 227, 15, 7113--7124.
[17]
}}Wang, L., Canning, A., Marques, O., and Voemel, C. 2008. The parallel energy scan (PESCAN) code. http://icl.cs.utk.edu/doe-nano/software/pescan/escan.
[18]
}}Wang, L. and Zunger, A. 1994. Solving Schrodinger’s equation around a desired energy: Application to silicon quantum dots. J. Chem. Phys. 100, 2394--2397.
[19]
}}Wang, L. and Zunger, A. 1996. Pseudopotential theory of nanometer silicon quantum dots application to silicon quantum dots. In Semiconductor Nanocluster, P. Kamat and D. Meisel Eds., ACM, New York, NY, 161--207.
[20]
}}Wu, K. and Simon, H. 2000a. Thick-Restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Mat. Anal. Appl. 22, 602--616.
[21]
}}Wu, K. and Simon, H. 2000b. TRLan user guide. Tech. rep. LBNL-43178, Lawrence Berkeley National Laboratory. Software http://crd.lbl.gov/~kewu/trlan.html.
[22]
}}Yamazaki, I., Wu, K., and Simon, H. 2008. a--TRLan user guide. Tech. rep. LBNL-1288E, Lawrence Berkeley National Laboratory. Software https://codeforge.lbl.gov/projects/trlan/.

Cited By

View all
  • (2024) Theory of electron and hole fine structure and Landé factors in lead chalcogenide nanowires Physical Review B10.1103/PhysRevB.110.165419110:16Online publication date: 15-Oct-2024
  • (2024)Multidimensional scaling for big dataAdvances in Data Analysis and Classification10.1007/s11634-024-00591-9Online publication date: 13-Apr-2024
  • (2023)Fast algorithms for singular value decomposition and the inverse of nearly low-rank matricesNational Science Review10.1093/nsr/nwad08310:6Online publication date: 25-Mar-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 37, Issue 3
September 2010
296 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/1824801
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 September 2010
Accepted: 01 February 2010
Revised: 01 October 2009
Received: 01 September 2008
Published in TOMS Volume 37, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Adaptive subspace dimension
  2. Lanczos
  3. electronic structure calculation
  4. thick-restart

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)4
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024) Theory of electron and hole fine structure and Landé factors in lead chalcogenide nanowires Physical Review B10.1103/PhysRevB.110.165419110:16Online publication date: 15-Oct-2024
  • (2024)Multidimensional scaling for big dataAdvances in Data Analysis and Classification10.1007/s11634-024-00591-9Online publication date: 13-Apr-2024
  • (2023)Fast algorithms for singular value decomposition and the inverse of nearly low-rank matricesNational Science Review10.1093/nsr/nwad08310:6Online publication date: 25-Mar-2023
  • (2020)Anharmonic coupling behind vibrational spectra of solvated ammonium: lighting up overtone states by Fermi resonance through tuning solvation environmentsPhysical Chemistry Chemical Physics10.1039/D0CP03519JOnline publication date: 2020
  • (2019)An Out-of-Core Eigen-Solver with OpenMP Parallel Scheme for Large Spare Damped SystemInternational Journal of Computational Methods10.1142/S0219876219500385(1950038)Online publication date: 21-Apr-2019
  • (2019)The Eigenvalues Slicing Library (EVSL): Algorithms, Implementation, and SoftwareSIAM Journal on Scientific Computing10.1137/18M117093541:4(C393-C415)Online publication date: 13-Aug-2019
  • (2019)The HANDE-QMC Project: Open-Source Stochastic Quantum Chemistry from the Ground State UpJournal of Chemical Theory and Computation10.1021/acs.jctc.8b0121715:3(1728-1742)Online publication date: 25-Jan-2019
  • (2019)Accurate and fast three-dimensional free vibration analysis of large complex structures using the finite element methodComputers & Structures10.1016/j.compstruc.2019.06.002221(142-156)Online publication date: Sep-2019
  • (2019)Global convergence of the restarted Lanczos and Jacobi---Davidson methods for symmetric eigenvalue problemsNumerische Mathematik10.1007/s00211-015-0699-4131:3(405-423)Online publication date: 2-Jan-2019
  • (2018) Fermi resonance in solvated H 3 O + : a counter-intuitive trend confirmed via a joint experimental and theoretical investigation Physical Chemistry Chemical Physics10.1039/C8CP02151A20:20(13836-13844)Online publication date: 2018
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media