Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Performance Evaluation of Spintronic-Based Spiking Neural Networks using Parallel Discrete-Event Simulation

Published: 25 November 2024 Publication History

Abstract

Spintronic devices that use the spin of electrons as the information state variable have the potential to emulate neuro-synaptic dynamics and can be realized within a compact form-factor, while operating at ultra-low energy-delay point. In this paper, we benchmark the performance of a spintronics hardware platform designed for handling neuromorphic tasks.
To explore the benefits of spintronics-based hardware on realistic neuromorphic workloads, we developed a Parallel Discrete-Event Simulation model called Doryta, which is further integrated with a materials-to-systems benchmarking framework. The benchmarking framework allows us to obtain quantitative metrics on the throughput and energy of spintronics-based neuromorphic computing and compare these against standard CMOS-based approaches. Although spintronics hardware offers significant energy and latency advantages, we find that for larger neuromorphic circuits, the performance is limited by the interconnection networks rather than the spintronics-based neurons and synapses. This limitation can be overcome by architectural changes to the network.
Through Doryta we are also able to show the power of neuromorphic computing by simulating Conway’s Game of Life (GoL), thus showing that it is Turing complete. We show that Doryta obtains over 300× speedup using 1,024 CPU cores when tested on a convolutional, sparse, neural architecture. When scaled-up 64 times, to a 200 million neuron model, the simulation ran in 3:42 minutes for a total of 2,000 virtual clock steps. The conservative approach of execution was found to be faster in most cases than the optimistic approach, even when a tie-breaking mechanism to guarantee deterministic execution, was deactivated.

Supplemental Material

Supplementary Material for Performance Evaluation of Spintronic-Based Spiking Neural Networks using Parallel Discrete-Event Simulation
This folder contains all the data and instructions to reproduce some results and figures shown in the paper. Some steps are optional, and when run they will produce slightly different results from those of the paper. This document is broken into four sections: software requirements, how to compile doryta, steps to reproduce energy estimation results and steps to reproduce strong scaling results.

References

[1]
H. Bauer and C. Sporrer. 1993. Reducing rollback overhead in time-warp based distributed simulation with optimized incremental state saving. In [1993]Proceedings 26th Annual Simulation Symposium. IEEE, Arlington, VA, 12–20. DOI:
[2]
D. W. Bauer Jr., C. D. Carothers, and A. Holder. 2009. Scalable time warp on blue gene supercomputers. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation. IEEE Computer Society, Washington, DC, USA, 35–44.
[3]
Pete Beckman, Kamil Iskra, Kazutomo Yoshii, Susan Coghlan, and Aroon Nataraj. 2008. Benchmarking the effects of operating system interference on extreme-scale parallel machines. Cluster Computing 11, 1 (2008), 3–16. DOI:
[4]
Elwyn R. Berlekamp, John Horton Conway, and Richard K. Guy. 1982. Winning Ways for Your Mathematical Plays. 2: Games in Particular. Academic Press, London.
[5]
Pierre Boulet, Philippe Devienne, Pierre Falez, Guillermo Polito, Mahyar Shahsavari, and Pierre Tirilly. 2017. N2S3, an Open-Source Scalable Spiking Neuromorphic Hardware Simulator. Research Report. Université de Lille 1, Sciences et Technologies ; CRIStAL UMR 9189.
[6]
Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M. Bower, Markus Diesmann, Abigail Morrison, Philip H. Goodman, Frederick C. Harris, Milind Zirpe, Thomas Natschläger, Dejan Pecevski, Bard Ermentrout, Mikael Djurfeldt, Anders Lansner, Olivier Rochel, Thierry Vieville, Eilif Muller, Andrew P. Davison, Sami El Boustani, and Alain Destexhe. 2007. Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23, 3 (Dec. 2007), 349–398.
[7]
R. E. Bryant. 1977. Simulation of Packet Communication Architecture Computer Systems. Ph.D. Dissertation. MIT.
[8]
Yi Cao, Andrew W. Rushforth, Yu Sheng, Houzhi Zheng, and Kaiyou Wang. 2019. Tuning a binary ferromagnet into a multistate synapse with spin–orbit-torque-induced plasticity. Adv. Funct. Mater. 29, 25 (2019), 1808104.
[9]
Suma George Cardwell, Craig Vineyard, Willam Severa, Frances S. Chance, Frederick Rothganger, Felix Wang, Srideep Musuvathy, Corinne Teeter, and James B. Aimone. 2020. Truly heterogeneous HPC: Co-design to achieve what science needs from HPC. In Driving Scientific and Engineering Discoveries through the Convergence of HPC, Big Data and AI, Jeffrey Nichols, Becky Verastegui, Arthur ‘Barney’ Maccabe, Oscar Hernandez, Suzanne Parete-Koon, and Theresa Ahearn (Eds.). Vol. 1315. Springer International Publishing, Cham, 349–365. DOI:
[10]
Nicholas T. Carnevale and Michael L. Hines. 2009. The NEURON Book (1st ed.). Cambridge University Press, USA.
[11]
Christopher D. Carothers, David Bauer, and Shawn Pearce. 2002. ROSS: A high-performance, low-memory, modular time warp system. J. Parallel and Distrib. Comput. 62, 11 (Nov. 2002), 1648–1669. DOI:
[12]
Christopher D. Carothers and Kalyan S. Perumalla. 2010. On deciding between conservative and optimistic approaches on massively parallel platforms. In Winter Simulation Conference’10. 678–687.
[13]
C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. 1999. Efficient optimistic parallel simulations using reverse computation. ACM Trans. Model. Comput. Simul. 9, 3 (1999), 224–253.
[14]
Andrew S. Cassidy, Paul Merolla, John V. Arthur, Steve K. Esser, Bryan Jackson, Rodrigo Alvarez-Icaza, Pallab Datta, Jun Sawada, Theodore M. Wong, Vitaly Feldman, Arnon Amir, Daniel Ben-Dayan Rubin, Filipp Akopyan, Emmett McQuinn, William P. Risk, and Dharmendra S. Modha. 2013. Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores. In The 2013 International Joint Conference on Neural Networks (IJCNN). 1–10.
[15]
Center for Computational Innovations. Artificial intelligence multiprocessing optimized system (AiMOS). cci.rpi.edu. ([n.d.]). https://cci.rpi.edu/aimos (accessed Feb 1, 2022).
[16]
K. M. Chandy and J. Misra. 1979. Distributed simulation: A case study in design and verification of distributed programs. In IEEE Transactions on Software Engineering, Vol. 24. 440–452.
[17]
Hsin-Pai Cheng, Wei Wen, Chunpeng Wu, Sicheng Li, Hai Helen Li, and Yiran Chen. 2017. Understanding the design of IBM neurosynaptic system and its tradeoffs: A user perspective. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE, Lausanne, 139–144.
[18]
Ran Cheng, Di Xiao, and Arne Brataas. 2016. Terahertz antiferromagnetic spin Hall nano-oscillator. Physical Review Letters 116, 20 (2016), 207603.
[19]
Prasanna Date, Catherine Schuman, Bill Kay, and Thomas Potok. 2021. Neuromorphic computing is Turing-complete. arXiv:2104.13983 [cs] (April 2021).
[20]
M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, and H. Wang. 2018. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 1 (January 2018), 82–99.
[21]
Andrew P. Davison. 2008. PyNN: A common interface for neuronal network simulators. Front. Neuroinform. 2 (2008). DOI:
[22]
Jianting Dong, Xinlu Li, Gautam Gurung, Meng Zhu, Peina Zhang, Fanxing Zheng, Evgeny Y. Tsymbal, and Jia Zhang. 2022. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128 (May 2022), 197201. Issue 19. DOI:
[23]
Andreas K. Fidjeland, Etienne B. Roesch, Murray P. Shanahan, and Wayne Luk. 2009. NeMo: A platform for neural modelling of spiking neurons using GPUs. In 2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors. IEEE, Boston, MA, USA, 137–144. DOI:
[24]
I. Fina, X. Marti, D Yi, J. Liu, J. H. Chu, C. Rayan-Serrao, S. Suresha, A. B. Shick, J. Železný, T. Jungwirth, T. Jungwirth, J. Fontcuberta, and R. Ramesh. 2014. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nature Communications 5, 1 (2014), 1--7.
[25]
Daniel Gall, Judy J. Cha, Zhihong Chen, Hyeuk Jin Han, Christopher Hinkle, Joshua A. Robinson, Ravishankar Sundararaman, and Riccardo Torsi. 2021. Materials for interconnects. MRS Bulletin 46, 10 (Oct. 2021), 959–966.
[26]
Jeff Gambino. 2018. Chapter 6 - Process technology for copper interconnects. In Handbook of Thin Film Deposition (Fourth Edition), Krishna Seshan and Dominic Schepis (Eds.). William Andrew Publishing, 147–194. DOI:
[27]
Martin Gardner. 1970. The fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223 (1970), 20–123.
[28]
Wulfram Gerstner and Werner M. Kistler. 2002. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, U.K.QP363 .G475 2002
[29]
Ashok K. Goel. 2008. Parasitic Resistances, Capacitances, and Inductances. 46–135. DOI:
[30]
Dan Goodman and Romain Brette. 2008. Brian: A simulator for spiking neural networks in Python. Frontiers in Neuroinformatics 2 (2008).
[31]
Julie Grollier, Damien Querlioz, K. Y. Camsari, Karin Everschor-Sitte, Shunsuke Fukami, and Mark D. Stiles. 2020. Neuromorphic spintronics. Nature Electronics 3, 7 (2020), 360–370.
[32]
Plesser Hans. 2008. NEST 2: A parallel simulator for large neuronal networks. Front. Neuroinform. 2 (2008). DOI:
[33]
Jennifer Hasler and Harry Marr. 2013. Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci. 7 (2013).
[34]
Matěj Hejda, Ekaterina Malysheva, Dafydd Owen-Newns, Qusay Raghib Ali Al-Taai, Weikang Zhang, Ignacio Ortega-Piwonka, Julien Javaloyes, Edward Wasige, Victor Dolores-Calzadilla, José M. L. Figueiredo, Bruno Romeira, and Antonio Hurtado. 2022. Artificial Optoelectronic Spiking Neuron Based on a Resonant Tunnelling Diode Coupled to a Vertical Cavity Surface Emitting Laser. (June 2022). DOI:arxiv:physics/2206.11044
[35]
Atsufumi Hirohata, Keisuke Yamada, Yoshinobu Nakatani, Ioan-Lucian Prejbeanu, Bernard Diény, Philipp Pirro, and Burkard Hillebrands. 2020. Review on spintronics: Principles and device applications. J. Magn. and Magn. Mater. 509 (2020), 166711.
[36]
Dazhi Hou, Zhiyong Qiu, Joseph Barker, Koji Sato, Kei Yamamoto, Saül Vélez, Juan M. Gomez-Perez, Luis E. Hueso, Felix Casanova, and Eiji Saitoh. 2017. Tunable sign change of spin Hall magnetoresistance in Pt/NiO/YIG structures. Physical Review Letters 118, 14 (2017), 147202.
[37]
Tomoki Ikeda, Masakiyo Tsunoda, Mikihiko Oogane, Seungjun Oh, Tadashi Morita, and Yasuo Ando. 2018. Anomalous Hall effect in polycrystalline Mn3Sn thin films. Applied Physics Letters 113, 22 (2018), 222405.
[38]
David Jefferson, Brian Beckman, Fred Wieland, Leo Blume, Mike Di Loreto, Phil Hontalas, Pierre Laroche, Kathy Sturdevant, Jack Tupman, Van Warren, John Wedel, Herb Younger, and Steve Bellenot. 1987. Distributed Simulation and the Time Warp Operating System. Technical Report OSTI 5639121. NASA Jet Propulsion Laboratory, Pasadena, CA, USA.
[39]
David Jefferson and Henry Sowizral. 1985. Fast Concurrent Simulation using the Time Warp Mechanism. Technical Report ADA129431. Rand. Corp., Santa Monica, CA, USA. Issue 2.
[40]
David R. Jefferson. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (1985), 404–425.
[41]
Roman Khymyn, Ivan Lisenkov, James Voorheis, Olga Sulymenko, Oleksandr Prokopenko, Vasil Tiberkevich, Johan Akerman, and Andrei Slavin. 2018. Ultra-fast artificial neuron: Generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator. Scientific Reports 8, 1 (2018), 1–9.
[42]
Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne Hubbard, and Lawrence D. Jackel. 1989. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 4 (Dec. 1989), 541–551.
[43]
Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. 1998. The MNIST Handwritten Digit Database. http://yann.lecun.com/exdb/mnist/ (1998).
[44]
William B. Levy and Victoria G. Calvert. 2021. Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number. Proceedings of the National Academy of Sciences 118, 18 (May 2021), e2008173118. DOI:
[45]
Samuel Liu, T. Patrick Xiao, Can Cui, Jean Anne C. Incorvia, Christopher H. Bennett, and Matthew J. Marinella. 2021. A domain wall-magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient training of deep neural networks. Applied Physics Letters 118, 20 (2021), 202405.
[46]
Danijela Marković, Alice Mizrahi, Damien Querlioz, and Julie Grollier. 2020. Physics for neuromorphic computing. Nature Reviews Physics 2, 9 (2020), 499–510.
[47]
Neil McGlohon and Christopher D. Carothers. 2021. Toward unbiased deterministic total ordering of parallel simulations with simultaneous events. In Proceedings of the Winter Simulation Conference (WSC’21). IEEE Press.
[48]
Carver Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 10 (1990), 1629–1636.
[49]
Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and Dharmendra S. Modha. 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 6197 (2014), 668–673.
[50]
P. K. Muduli, T. Higo, T. Nishikawa, D. Qu, H. Isshiki, K. Kondou, D. Nishio-Hamane, S. Nakatsuji, and YoshiChika Otani. 2019. Evaluation of spin diffusion length and spin Hall angle of the antiferromagnetic Weyl semimetal mn 3 sn. Physical Review B 99, 18 (2019), 184425.
[51]
David M. Nicol. 1991. Performance bounds on parallel self-initiating discrete-event simulations. ACM Trans. Model. Comput. Simul. 1, 1 (Jan. 1991), 24–50. DOI:
[52]
David M. Nicol. 1993. The cost of conservative synchronization in parallel discrete event simulations. J. ACM 40, 2 (April 1993), 304–333.
[53]
Dmitri E. Nikonov and Ian A. Young. 2019. Benchmarking delay and energy of neural inference circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 5, 2 (Dec. 2019), 75–84.
[54]
Chenyun Pan and Azad Naeemi. 2016. Non-Boolean computing benchmarking for beyond-CMOS devices based on cellular neural network. IEEE J. Explor. Solid-State Computat. Devices Circuits 2 (2016), 36–43.
[55]
Arun Parthasarathy, Egecan Cogulu, Andrew D. Kent, and Shaloo Rakheja. 2021. Precessional spin-torque dynamics in biaxial antiferromagnets. Phys. Rev. B 103, 2 (2021), 024450.
[56]
Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2012. The ROme OpTimistic simulator: Core internals and programming model. In 4th International ICST Conference on Simulation Tools and Techniques.
[57]
Kalyan S. Perumalla. 2014. Introduction to Reversible Computing. CRC Press/Taylor & Francis Group, Boca Raton, Florida. QA76.9.R48 P47 2014
[58]
Adriano Pimpini. 2023. Towards accessible parallel discrete event simulation of spiking neural networks. In Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’23). Association for Computing Machinery, New York, NY, USA, 60–61. DOI:
[59]
Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pellegrini. 2022. Speculative distributed simulation of very large spiking neural networks. In Proceedings of the 2022 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’22). Association for Computing Machinery, New York, NY, USA, 93–104. DOI:
[60]
Mark Plagge, Christopher D. Carothers, and Elsa Gonsiorowski. 2016. NeMo: A massively parallel discrete-event simulation model for neuromorphic architectures. In Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS’16). Association for Computing Machinery, New York, NY, USA, 233–244.
[61]
Mark Plagge, Christopher D. Carothers, Elsa Gonsiorowski, and Neil Mcglohon. 2018. NeMo: A massively parallel discrete-event simulation model for neuromorphic architectures. ACM Trans. Model. Comput. Simul. 28, 4, Article 30 (Sept. 2018), 25 pages.
[62]
Peixin Qin, Zexin Feng, Xiaorong Zhou, Huixin Guo, Jinhua Wang, Han Yan, Xiaoning Wang, Hongyu Chen, Xin Zhang, Haojiang Wu, Zengwei Zhu, and Zhiqi Liu. 2020. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS nano 14, 5 (2020), 6242--6248.
[63]
Maheshwar Pd. Sah, Hyongsuk Kim, and Leon O. Chua. 2014. Brains are made of memristors. IEEE Circuits and Systems Magazine 14, 1 (2014), 12–36. DOI:
[64]
Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, and James S. Plank. 2017. A survey of neuromorphic computing and neural networks in hardware. arXiv:1705.06963 [cs] (May 2017). arxiv:cs/1705.06963
[65]
Abhronil Sengupta, Aparajita Banerjee, and Kaushik Roy. 2016. Hybrid spintronic-CMOS spiking neural network with on-chip learning: Devices, circuits, and systems. Phys. Rev. Applied 6 (Dec. 2016), 064003. Issue 6.
[66]
William Severa, Craig M. Vineyard, Ryan Dellana, Stephen J. Verzi, and James B. Aimone. 2019. Whetstone: A method for training deep artificial neural networks for binary communication. Nat. Mach. Intell. 1, 2 (Feb. 2019), 86–94.
[67]
Ankit Shukla and Shaloo Rakheja. 2022. Spin-torque-driven terahertz auto-oscillations in noncollinear coplanar antiferromagnets. Phys. Rev. Applied 17, 3 (2022), 034037.
[68]
Hans Skarsvåg, Cecilia Holmqvist, and Arne Brataas. 2015. Spin superfluidity and long-range transport in thin-film ferromagnets. Physical Review Letters 115, 23 (2015), 237201.
[69]
Jacob M. Springer and Garrett T. Kenyon. 2020. It’s hard for neural networks to learn the game of life. arXiv:2009.01398 [cCS, Stat] (Sept. 2020).
[70]
Sudhir Srinivasan and Paul F. Reynolds. 1995. NPSI adaptive synchronization algorithms for PDES. In Proceedings of the 27th Conference on Winter Simulation (WSC’95). IEEE Computer Society, USA, 658–665. DOI:
[71]
Sudhir Srinivasan and Paul F. Reynolds. 1998. Elastic time. ACM Trans. Model. Comput. Simul. 8, 2 (April 1998), 103–139. DOI:
[72]
Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swagath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi (Viji) Srinivasan, and Kailash Gopalakrishnan. 2020. Ultra-low precision 4-bit training of deep neural networks. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1796–1807.
[73]
Alexander N. Tait, Thomas Ferreira de Lima, Ellen Zhou, Allie X. Wu, Mitchell A. Nahmias, Bhavin J. Shastri, and Paul R. Prucnal. 2017. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 1 (Aug. 2017), 7430. DOI:
[74]
James M. Taylor, Anastasios Markou, Edouard Lesne, Pranava Keerthi Sivakumar, Chen Luo, Florin Radu, Peter Werner, Claudia Felser, and Stuart S. P. Parkin. 2020. Anomalous and topological Hall effects in epitaxial thin films of the noncollinear antiferromagnet Mn 3 Sn. Physical Review B 101, 9 (2020), 094404.
[75]
Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles, and Julie Grollier. 2017. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 7664 (2017), 428--431.
[76]
Hanshen Tsai, Tomoya Higo, Kouta Kondou, Shoya Sakamoto, Ayuko Kobayashi, Takumi Matsuo, Shinji Miwa, Yoshichika Otani, and Satoru Nakatsuji. 2021. Large Hall signal due to electrical switching of an antiferromagnetic Weyl semimetal state. Small Science 1, 5 (2021), 2000025. DOI:
[77]
Y. Y. Wang, C. Song, B. Cui, G. Y. Wang, F. Zeng, and F. Pan. 2012. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109 (Sep. 2012), 137201. Issue 13. DOI:
[78]
Lloyd Watts. 1993. Event-driven simulation of networks of spiking neurons. In Advances in Neural Information Processing Systems, Vol. 6. Morgan-Kaufmann.
[79]
N. Wolfe, M. Plagge, C. D. Carothers, M. Mubarak, and R. B. Ross. 2018. Evaluating the impact of spiking neural network traffic on extreme-scale hybrid systems. In 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS). 108–120.
[80]
Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 [CS, Stat] (Sept. 2017).
[81]
J. Železnỳ, P. Wadley, K. Olejník, A. Hoffmann, and H. Ohno. 2018. Spin transport and spin torque in antiferromagnetic devices. Nature Physics 14, 3 (2018), 220–228.
[82]
Mohammed A. Zidan, John Paul Strachan, and Wei D. Lu. 2018. The future of electronics based on memristive systems. Nat. Electron. 1, 1 (Jan. 2018), 22–29. DOI:

Cited By

View all
  • (2024)Introduction to the Special Issue on PADS 2022ACM Transactions on Modeling and Computer Simulation10.1145/369827335:1(1-3)Online publication date: 25-Nov-2024
  • (2024)Reproducibility Report for the Paper "Performance Evaluation of Spintronic-Based Spiking Neural Networks Using Parallel Discrete-Event Simulation"ACM Transactions on Modeling and Computer Simulation10.1145/368028335:1(1-7)Online publication date: 25-Nov-2024

Index Terms

  1. Performance Evaluation of Spintronic-Based Spiking Neural Networks using Parallel Discrete-Event Simulation

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image ACM Transactions on Modeling and Computer Simulation
        ACM Transactions on Modeling and Computer Simulation  Volume 35, Issue 1
        January 2025
        170 pages
        EISSN:1558-1195
        DOI:10.1145/3696814
        • Editor:
        • Wentong Cai
        Issue’s Table of Contents

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 25 November 2024
        Online AM: 05 March 2024
        Accepted: 04 February 2024
        Revised: 24 December 2023
        Received: 21 November 2022
        Published in TOMACS Volume 35, Issue 1

        Check for updates

        Badges

        Author Tags

        1. Spiking neural networks
        2. spintronic devices
        3. chip performance
        4. energy estimation
        5. parallel discrete event simulation
        6. game of life
        7. Turing completeness

        Qualifiers

        • Research-article

        Funding Sources

        • Air Force Research Laboratory

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)213
        • Downloads (Last 6 weeks)43
        Reflects downloads up to 14 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Introduction to the Special Issue on PADS 2022ACM Transactions on Modeling and Computer Simulation10.1145/369827335:1(1-3)Online publication date: 25-Nov-2024
        • (2024)Reproducibility Report for the Paper "Performance Evaluation of Spintronic-Based Spiking Neural Networks Using Parallel Discrete-Event Simulation"ACM Transactions on Modeling and Computer Simulation10.1145/368028335:1(1-7)Online publication date: 25-Nov-2024

        View Options

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        Full Text

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media