Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Vector-boson production at hadron colliders: hard-collinear coefficients at the NNLO

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider QCD radiative corrections to vector-boson production in hadron collisions. We present the next-to-next-to-leading order (NNLO) result of the hard-collinear coefficient function for the all-order resummation of logarithmically enhanced contributions at small transverse momenta. The coefficient function controls NNLO contributions in resummed calculations at full next-to-next-to-leading logarithmic accuracy. The same coefficient function is used in applications of the subtraction method to perform fully exclusive perturbative calculations up to NNLO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If V=γ or if the vector boson V is not an on-shell particle, the transverse-momentum cross section \(d\sigma/d q_{T}^{2}\) has to be replaced by the doubly differential distribution \(M^{2}\,d\sigma/d M^{2} \,d q_{T}^{2} \), where M is the invariant mass of V.

  2. In our notation, the subscripts c and \({\bar{c}}\) denote a quark and an antiquark (or vice versa) that do not necessarily have the same flavour. The flavour structure depends on the produced vector boson V and it is (implicitly) specified by the specific form of the Born level cross section \(\sigma^{(0)}_{c {\bar{c}},V}\).

  3. We list some typos that we have found and corrected in some formulae of Ref. [52]. In Eq. (2.12), \(B_{2}^{qG}\) has to be replaced by \(B_{2}^{qG}+C_{2}^{qG}\), and \(C_{2}^{qG}\) has to be replaced by \(C_{3}^{qG}\). In Eq. (A.4), two signs have to be changed: \(B_{1}^{qG}\) has to be replaced by \(- B_{1}^{qG}\), and A qG has to be replaced by −A qG. In the first line of Eq. (A.10), the term C F (f u f s f t ) has to be replaced by C A (f u f s f t ).

  4. Some technical details related to the limit Q 0M are illustrated in Ref. [22].

  5. The reader who is not interested in issues related to the specification of a resummation scheme can simply assume that \(H_{q}^{\mathrm{DY}}(\alpha _{\mathrm {S}}) \equiv 1\) throughout this paper. The choice \(H_{q}^{\mathrm{DY}}(\alpha _{\mathrm {S}}) = 1\) is customarily used in most of the literature on q T resummation for vector-boson production.

  6. The resummation-scheme dependence also cancels by consistently expanding Eq. (7) in terms of classes of resummed (leading, next-to-leading and so forth) logarithmic contributions [44].

  7. The other non-vanishing entries are obtained by the symmetry relation \(\mathcal{H}^{\mathrm{DY}}_{q\bar{q}\leftarrow ab}= \mathcal{H}^{\mathrm{DY}}_{q\bar{q}\leftarrow {\bar{b}}{\bar{a}}}\). Several entries of the second-order matrix \(\mathcal{H}^{\mathrm{DY} (2)}_{q\bar{q}\leftarrow ab}\) are vanishing because of Eq. (15).

References

  1. Y.L. Dokshitzer, D. Diakonov, S.I. Troian, Phys. Lett. B 79, 269 (1978)

    Article  ADS  Google Scholar 

  2. Y.L. Dokshitzer, D. Diakonov, S.I. Troian, Phys. Rep. 58, 269 (1980)

    Article  ADS  Google Scholar 

  3. G. Parisi, R. Petronzio, Nucl. Phys. B 154, 427 (1979)

    Article  ADS  Google Scholar 

  4. G. Curci, M. Greco, Y. Srivastava, Nucl. Phys. B 159, 451 (1979)

    Article  ADS  Google Scholar 

  5. J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981). [Erratum-ibid. B 213, 545 (1983)]

    Article  ADS  Google Scholar 

  6. J.C. Collins, D.E. Soper, Nucl. Phys. B 197, 446 (1982)

    Article  ADS  Google Scholar 

  7. J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 250, 199 (1985)

    Article  ADS  Google Scholar 

  8. S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 596, 299 (2001)

    Article  ADS  MATH  Google Scholar 

  9. P.M. Nadolsky, C. Balazs, E.L. Berger, C.-P. Yuan, Phys. Rev. D 76, 013008 (2007)

    Article  ADS  Google Scholar 

  10. S. Catani, M. Grazzini, Nucl. Phys. B 845, 297 (2011)

    Article  ADS  MATH  Google Scholar 

  11. J. Kodaira, L. Trentadue, Phys. Lett. B 112, 66 (1982)

    Article  ADS  Google Scholar 

  12. J. Kodaira, L. Trentadue, Report SLAC-PUB-2934 (1982)

  13. J. Kodaira, L. Trentadue, Phys. Lett. B 123, 335 (1983)

    Article  ADS  Google Scholar 

  14. C.T.H. Davies, W.J. Stirling, Nucl. Phys. B 244, 337 (1984)

    Article  ADS  Google Scholar 

  15. C.T.H. Davies, B.R. Webber, W.J. Stirling, Nucl. Phys. B 256, 413 (1985)

    Article  ADS  Google Scholar 

  16. S. Catani, E. D’Emilio, L. Trentadue, Phys. Lett. B 211, 335 (1988)

    Article  ADS  Google Scholar 

  17. D. de Florian, M. Grazzini, Phys. Rev. Lett. 85, 4678 (2000)

    Article  ADS  Google Scholar 

  18. D. de Florian, M. Grazzini, Nucl. Phys. B 616, 247 (2001)

    Article  ADS  Google Scholar 

  19. T. Becher, M. Neubert, Eur. Phys. J. C 71, 1665 (2011)

    Article  ADS  Google Scholar 

  20. S. Catani, M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007)

    Article  ADS  Google Scholar 

  21. S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Phys. Rev. Lett. 103, 082001 (2009)

    Article  ADS  Google Scholar 

  22. S. Catani, M. Grazzini, Eur. Phys. J. C 72, 2013 (2012)

    Article  ADS  Google Scholar 

  23. C. Balazs, C.P. Yuan, Phys. Rev. D 56, 5558 (1997)

    Article  ADS  Google Scholar 

  24. R.K. Ellis, D.A. Ross, S. Veseli, Nucl. Phys. B 503, 309 (1997)

    Article  ADS  Google Scholar 

  25. J.-w. Qiu, X.-f. Zhang, Phys. Rev. D 63, 114011 (2001)

    Article  ADS  Google Scholar 

  26. E.L. Berger, J.-w. Qiu, Phys. Rev. D 67, 034026 (2003)

    Article  ADS  Google Scholar 

  27. E.L. Berger, J.-w. Qiu, Phys. Rev. Lett. 91, 222003 (2003)

    Article  ADS  Google Scholar 

  28. A. Kulesza, W.J. Stirling, Eur. Phys. J. C 20, 349 (2001)

    Article  ADS  Google Scholar 

  29. A. Kulesza, G.F. Sterman, W. Vogelsang, Phys. Rev. D 66, 014011 (2002)

    Article  ADS  Google Scholar 

  30. F. Landry, R. Brock, P.M. Nadolsky, C.P. Yuan, Phys. Rev. D 67, 073016 (2003)

    Article  ADS  Google Scholar 

  31. S. Berge, P.M. Nadolsky, F.I. Olness, Phys. Rev. D 73, 013002 (2006)

    Article  ADS  Google Scholar 

  32. G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Nucl. Phys. B 815, 174 (2009)

    Article  ADS  MATH  Google Scholar 

  33. G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Phys. Lett. B 696, 207 (2011)

    Article  ADS  Google Scholar 

  34. S. Mantry, F. Petriello, Phys. Rev. D 84, 014030 (2011)

    Article  ADS  Google Scholar 

  35. T. Becher, M. Neubert, D. Wilhelm, J. High Energy Phys. 1202, 124 (2012)

    Article  ADS  Google Scholar 

  36. A. Banfi, M. Dasgupta, S. Marzani, L. Tomlinson, J. High Energy Phys. 1201, 044 (2012)

    Article  ADS  Google Scholar 

  37. A. Banfi, M. Dasgupta, S. Marzani, L. Tomlinson, Report DCPT-12-66. arXiv:1205.4760 [hep-ph]

  38. A. Banfi, G.P. Salam, G. Zanderighi, J. High Energy Phys. 1206, 159 (2012)

    Article  ADS  Google Scholar 

  39. A. Banfi, P.F. Monni, G.P. Salam, G. Zanderighi. Report CERN-PH-TH-2012-173. arXiv:1206.4998 [hep-ph]

  40. K. Melnikov, F. Petriello, Phys. Rev. Lett. 96, 231803 (2006)

    Article  ADS  Google Scholar 

  41. K. Melnikov, F. Petriello, Phys. Rev. D 74, 114017 (2006)

    Article  ADS  Google Scholar 

  42. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011)

    Article  ADS  Google Scholar 

  43. R. Gavin, Y. Li, F. Petriello, S. Quackenbush. Report ANL-HEP-PR-11-83. arXiv:1201.5896 [hep-ph]

  44. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 737, 73 (2006)

    Article  ADS  MATH  Google Scholar 

  45. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 791, 1 (2008)

    Article  ADS  Google Scholar 

  46. M. Grazzini, J. High Energy Phys. 0802, 043 (2008)

    Article  ADS  Google Scholar 

  47. G. Ferrera, M. Grazzini, F. Tramontano, Phys. Rev. Lett. 107, 152003 (2011)

    Article  ADS  Google Scholar 

  48. S. Catani, L. Cieri, D. de Florian, G. Ferrera, M. Grazzini, Phys. Rev. Lett. 108, 072001 (2012)

    Article  ADS  Google Scholar 

  49. R. Hamberg, W.L. van Neerven, T. Matsuura, Nucl. Phys. B 359, 343 (1991). [Erratum-ibid. B 644, 403 (2002)]

    Article  ADS  Google Scholar 

  50. R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)

    Article  ADS  Google Scholar 

  51. R.K. Ellis, G. Martinelli, R. Petronzio, Nucl. Phys. B 211, 106 (1983)

    Article  ADS  Google Scholar 

  52. R.J. Gonsalves, J. Pawlowski, C.-F. Wai, Phys. Rev. D 40, 2245 (1989)

    Article  ADS  Google Scholar 

  53. P.B. Arnold, M.H. Reno, Nucl. Phys. B 319, 37 (1989). [Erratum-ibid. B 330, 284 (1990)]

    Article  ADS  Google Scholar 

  54. T. Gehrmann, T. Lubbert, L.L. Yang, arXiv:1209.0682 [hep-ph]

Download references

Acknowledgements

This work was supported in part by UBACYT, CONICET, ANPCyT, INFN and the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet, Initial Training Network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Grazzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catani, S., Cieri, L., de Florian, D. et al. Vector-boson production at hadron colliders: hard-collinear coefficients at the NNLO. Eur. Phys. J. C 72, 2195 (2012). https://doi.org/10.1140/epjc/s10052-012-2195-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2195-7

Keywords

Navigation