Abstract
We study the critical behavior of the Anderson localization-delocalization transition in corner-sharing tetrahedral lattices. We compare our results obtained by three different numerical methods namely the multifractal analysis, the Green resolvent method, and the energy-level statistics which yield the singularity strength, the decay length of the wave functions, and the (integrated) energy-level distribution, respectively. From these measures a finite-size scaling approach allows us to determine the critical parameters simultaneously. With particular emphasis we calculate the propagation of the statistical errors by a Monte-Carlo method. We find a high agreement between the results of all methods and we can estimate the highest critical disorder W c = 14.474 (8) at energy E c = − 4.0 and the critical exponent ν = 1.565 (11). Our results agree with a previous study by Fazileh et al. [F. Fazileh, X. Chen, R.J. Gooding, K. Tabunshchyk, Phys. Rev. B 73, 035124 (2006)] but improve accuracy significantly.
Similar content being viewed by others
References
P.W. Anderson, Phys. Rev. 109, 1492 (1958)
F. Wegner, Z. Phys. B 25, 327 (1976)
E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)
E.P. Wigner, Proc. Camb. Phil. Soc. 47, 790 (1951)
F.J. Dyson, J. Math. Phys. 3, 140 (1962)
M. Lopez, J.F. Clément, P. Szriftgiser, J.C. Garreau, D. Delande, Phys. Rev. Lett. 108, 095701 (2012)
B. Kramer, A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993)
Anderson Localization and Its Ramifications: Disorder, Phase Coherence, and Electron Correlations, Lecture Notes in Physics, edited by T. Brandes, S. Kettemann (Springer, Berlin, 2003), Vol. 630
F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)
A. Rodriguez, L.J. Vasquez, K. Slevin, R.A. Römer, Phys. Rev. B 84, 134209 (2011)
K. Slevin, T. Ohtsuki, New J. Phys. 16, 015012 (2014)
L. Ujfalusi, I. Varga, Phys. Rev. B 91, 184206 (2015)
F. Fazileh, R.J. Gooding, D.C. Johnston, Phys. Rev. B 69, 104503 (2004)
F. Fazileh, X. Chen, R.J. Gooding, K. Tabunshchyk, Phys. Rev. B 73, 035124 (2006)
J.L. Pichard, G. Sarma, J. Phys. C 14, L127 (1981)
L.J. Vasquez, A. Rodriguez, R.A. Römer, Phys. Rev. B 78, 195106 (2008)
A. Rodriguez, L.J. Vasquez, R.A. Römer, Phys. Rev. B 78, 195107 (2008)
A. Eilmes, A.M. Fischer, R.A. Römer, Phys. Rev. B 77, 245117 (2008)
M. Schreiber, M. Ottomeier, J. Phys.: Condens. Matter 4, 1959 (1992)
K. Slevin, T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999)
C. Castellani, L. Peliti, J. Phys. A 19, L429 (1986)
M. Schreiber, H. Grussbach, Phys. Rev. Lett. 67, 607 (1991)
T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986)
S. Thiem, M. Schreiber, Eur. Phys. J. B 86, 48 (2013)
R. Haydock, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1980), Vol. 35, pp. 215–294
A. MacKinnon, B. Kramer, Phys. Rev. Lett. 47, 1546 (1981)
A. MacKinnon, B. Kramer, Z. Phys. B 53, 1 (1983)
R. Johnston, H. Kunz, J. Phys. C 16, 4565 (1983)
K. Nikolic, A. MacKinnon, Phys. Rev. B 47, 6555 (1993)
R.A. Römer, personal communication about error estimates, April 3, 2014
E. Hofstetter, M. Schreiber, Phys. Rev. B 48, 16979 (1993)
M. Bollhöfer, Y. Notay, Tech. Rep. GANMN 06-01, Université Libre de Bruxelles, 2006, http://homepages.ulb.ac.be/˜jadamilu/
J.J. Ludlam, S.N. Taraskin, S.R. Elliott, Phys. Rev. B 67, 132203 (2003)
J. Varga, Phys. Rev. B 66, 094201 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Puschmann, M., Cain, P. & Schreiber, M. Analysis of localization-delocalization transitions in corner-sharing tetrahedral lattices. Eur. Phys. J. B 88, 275 (2015). https://doi.org/10.1140/epjb/e2015-60562-x
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2015-60562-x