Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Experimental study of the \(^{11}\text {B}(p,3\alpha )\gamma \) reaction at \(E_p=0.5\)–2.7 MeV

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Our understanding of the low-lying resonance structure in \(^{12}\)C remains incomplete. We have used the \(^{11}\text {B}(p,3\alpha )\gamma \) reaction at proton energies of \(E_p=0.5\)–2.7 MeV as a selective probe of the excitation region above the \(3\alpha \) threshold in \(^{12}\)C. Transitions to individual levels in \(^{12}\)C were identified by measuring the 3\(\alpha \) final state with a compact array of charged-particle detectors. Previously identified transitions to narrow levels were confirmed and new transitions to broader levels were observed for the first time. Here, we report cross sections, deduce partial \(\gamma \)-decay widths and discuss the relative importance of direct and resonant capture mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request].

Notes

  1. Throughout this paper the notation \(E_x,\,J^{\pi }\) is used to denote excited nuclear levels, \(E_x\) being the excitation energy in MeV and \(J^{\pi }\) the spin and parity.

References

  1. G. Symons, P. Treacy, Nucl. Phys. 46, 93–107 (1963)

    Article  Google Scholar 

  2. R.E. Segel, S.S. Hanna, R.G. Allas, Phys. Rev. 139, B818–B830 (1965)

    Article  ADS  Google Scholar 

  3. H.W. Becker, C. Rolfs, H.P. Trautvetter, Zeitschrift für Physik A Hadrons and Nuclei 327(3), 341–355 (1987)

    Article  ADS  Google Scholar 

  4. S.S. Hanna, W. Feldman, M. Suffert, D. Kurath, Phys. Rev. C 25, 1179–1186 (1982)

    Article  ADS  Google Scholar 

  5. M. Alcorta et al., Nucl. Instrum. Methods A 605, 318–325 (2009)

    Article  ADS  Google Scholar 

  6. O.S. Kirsebom et al., Phys. Lett. B 680, 44–49 (2009)

    Article  ADS  Google Scholar 

  7. K.L. Laursen, H.O.U. Fynbo, O.S. Kirsebom, K.S. Madsbøll, K. Riisager, Eur. Phys. J. A 52(12), 370 (2016)

    Article  ADS  Google Scholar 

  8. M. Munch, O.S. Kirsebom, J.A. Swartz, H.O.U. Fynbo, Eur. Phys. J. A 56, 17 (2020)

    Article  ADS  Google Scholar 

  9. S.S. Hanna, W. Feldman, M. Suffert, D. Kurath, Phys. Rev. C 25(3), 1179–1186 (1982)

    Article  ADS  Google Scholar 

  10. H.O.U. Fynbo et al., Phys. Rev. Lett. 91(8), 082502 (2003)

    Article  ADS  Google Scholar 

  11. C. Rolfs, Nucl. Phys. A 217(1), 29–70 (1973)

    Article  ADS  Google Scholar 

  12. E.G. Adelberger, R.E. Marrs, K.A. Snover, J.E. Bussoletti, Phys. Rev. C 15(2), 484–497 (1977)

    Article  ADS  Google Scholar 

  13. J. Kelley, J. Purcell, C. Sheu, Nucl. Phys. A 968, 71–253 (2017)

    Article  ADS  Google Scholar 

  14. G. Dearnaley, G.A. Dissanaike, A.P. French, G.L. Jones, Phys. Rev. 108, 743–753 (1957)

    Article  ADS  Google Scholar 

  15. F. Zijderhand, F. Jansen, C. Alderliesten, C. van der Leun, Nucl. Instrum. Methods A 286(3), 490–496 (1990)

    Article  ADS  Google Scholar 

  16. M. Suffert, W. Feldman, S.S. Hanna, Part. Nucl. 4, 175 (1972)

    Google Scholar 

  17. P. Lewis, G. Shute, B. Spicer, V. Officer, P. Andrews, S. Banks, Nucl. Phys. A 474(2), 499–517 (1987)

    Article  ADS  Google Scholar 

  18. G.H. Neuschaefer, M.N. Stephens, S.L. Tabor, K.W. Kemper, Phys. Rev. C 28, 1594 (1983)

    Article  ADS  Google Scholar 

  19. A. Kiss, C. Mayer-Boricke, M. Rogge, P. Turek, S. Wiktor, J. Phys. G Nucl. Phys. 13(8), 1067–1074 (1987)

    Article  ADS  Google Scholar 

  20. P. Endt, Atom. Data Nucl. Data Tables 55(1), 171–197 (1993)

    Article  ADS  Google Scholar 

  21. M. Alcorta et al., Phys. Rev. C 86, 064306 (2012)

    Article  ADS  Google Scholar 

  22. W.A. Rolke, A.M. López, J. Conrad, Nucl. Instrum. Methods A 551(2), 493–503 (2005)

    Article  ADS  Google Scholar 

  23. S. Hyldegaard et al., Phys. Rev. C 81(2), 024303 (2010)

    Article  ADS  Google Scholar 

  24. V.M. Datar et al., Phys. Rev. Lett. 94, 122502 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Folmer Lyckegaard for manufacturing the target. This work has been supported by the European Research Council under ERC starting grant LOBENA, no. 307447. OSK acknowledges support from the Villum Foundation through Project no. 10117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. U. Fynbo.

Additional information

Communicated by Alessia Di Pietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsebom, O.S., Howard, A.M., Munch, M. et al. Experimental study of the \(^{11}\text {B}(p,3\alpha )\gamma \) reaction at \(E_p=0.5\)–2.7 MeV. Eur. Phys. J. A 56, 179 (2020). https://doi.org/10.1140/epja/s10050-020-00183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00183-z

Navigation