Abstract
Our understanding of the low-lying resonance structure in \(^{12}\)C remains incomplete. We have used the \(^{11}\text {B}(p,3\alpha )\gamma \) reaction at proton energies of \(E_p=0.5\)–2.7 MeV as a selective probe of the excitation region above the \(3\alpha \) threshold in \(^{12}\)C. Transitions to individual levels in \(^{12}\)C were identified by measuring the 3\(\alpha \) final state with a compact array of charged-particle detectors. Previously identified transitions to narrow levels were confirmed and new transitions to broader levels were observed for the first time. Here, we report cross sections, deduce partial \(\gamma \)-decay widths and discuss the relative importance of direct and resonant capture mechanisms.
Similar content being viewed by others
Data Availability Statement
This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request].
Notes
Throughout this paper the notation \(E_x,\,J^{\pi }\) is used to denote excited nuclear levels, \(E_x\) being the excitation energy in MeV and \(J^{\pi }\) the spin and parity.
References
G. Symons, P. Treacy, Nucl. Phys. 46, 93–107 (1963)
R.E. Segel, S.S. Hanna, R.G. Allas, Phys. Rev. 139, B818–B830 (1965)
H.W. Becker, C. Rolfs, H.P. Trautvetter, Zeitschrift für Physik A Hadrons and Nuclei 327(3), 341–355 (1987)
S.S. Hanna, W. Feldman, M. Suffert, D. Kurath, Phys. Rev. C 25, 1179–1186 (1982)
M. Alcorta et al., Nucl. Instrum. Methods A 605, 318–325 (2009)
O.S. Kirsebom et al., Phys. Lett. B 680, 44–49 (2009)
K.L. Laursen, H.O.U. Fynbo, O.S. Kirsebom, K.S. Madsbøll, K. Riisager, Eur. Phys. J. A 52(12), 370 (2016)
M. Munch, O.S. Kirsebom, J.A. Swartz, H.O.U. Fynbo, Eur. Phys. J. A 56, 17 (2020)
S.S. Hanna, W. Feldman, M. Suffert, D. Kurath, Phys. Rev. C 25(3), 1179–1186 (1982)
H.O.U. Fynbo et al., Phys. Rev. Lett. 91(8), 082502 (2003)
C. Rolfs, Nucl. Phys. A 217(1), 29–70 (1973)
E.G. Adelberger, R.E. Marrs, K.A. Snover, J.E. Bussoletti, Phys. Rev. C 15(2), 484–497 (1977)
J. Kelley, J. Purcell, C. Sheu, Nucl. Phys. A 968, 71–253 (2017)
G. Dearnaley, G.A. Dissanaike, A.P. French, G.L. Jones, Phys. Rev. 108, 743–753 (1957)
F. Zijderhand, F. Jansen, C. Alderliesten, C. van der Leun, Nucl. Instrum. Methods A 286(3), 490–496 (1990)
M. Suffert, W. Feldman, S.S. Hanna, Part. Nucl. 4, 175 (1972)
P. Lewis, G. Shute, B. Spicer, V. Officer, P. Andrews, S. Banks, Nucl. Phys. A 474(2), 499–517 (1987)
G.H. Neuschaefer, M.N. Stephens, S.L. Tabor, K.W. Kemper, Phys. Rev. C 28, 1594 (1983)
A. Kiss, C. Mayer-Boricke, M. Rogge, P. Turek, S. Wiktor, J. Phys. G Nucl. Phys. 13(8), 1067–1074 (1987)
P. Endt, Atom. Data Nucl. Data Tables 55(1), 171–197 (1993)
M. Alcorta et al., Phys. Rev. C 86, 064306 (2012)
W.A. Rolke, A.M. López, J. Conrad, Nucl. Instrum. Methods A 551(2), 493–503 (2005)
S. Hyldegaard et al., Phys. Rev. C 81(2), 024303 (2010)
V.M. Datar et al., Phys. Rev. Lett. 94, 122502 (2005)
Acknowledgements
We would like to thank Folmer Lyckegaard for manufacturing the target. This work has been supported by the European Research Council under ERC starting grant LOBENA, no. 307447. OSK acknowledges support from the Villum Foundation through Project no. 10117.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Alessia Di Pietro.
Rights and permissions
About this article
Cite this article
Kirsebom, O.S., Howard, A.M., Munch, M. et al. Experimental study of the \(^{11}\text {B}(p,3\alpha )\gamma \) reaction at \(E_p=0.5\)–2.7 MeV. Eur. Phys. J. A 56, 179 (2020). https://doi.org/10.1140/epja/s10050-020-00183-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epja/s10050-020-00183-z