Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Cross section measurements of 155,157Gd(n,\(\gamma\)) induced by thermal and epithermal neutrons

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2019

This article has been updated

Abstract.

Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of \(2.01(28) \times 10^{-4}\) and \(2.17(41) \times 10^{-4}\); average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 28 March 2019

    After publication of the paper, the authors noticed some errors in the list of authors and in the list of affiliations. Their correct version is given in this erratum.

References

  1. F. Käppeler, R. Gallino, S. Bisterzo, Wako Aoki, Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  2. A. Deagostino et al., Future Med. Chem. 8, 899 (2016)

    Article  Google Scholar 

  3. J.F. Beacom, M.R. Vagins, Phys. Rev. Lett. 93, 171101 (2004)

    Article  ADS  Google Scholar 

  4. F. Rocchi, A. Guglielmelli, D.M. Castelluccio, C. Massimi, Eur. Phys. J. Nucl. Sci. Technol. 3, 21 (2017)

    Google Scholar 

  5. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  6. OECD/NEA Data Bank, The JEF-3.3 Nuclear Data Library, available online at https://doi.org/www.oecd-nea.org/dbdata/JEFF33/

  7. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  8. S.F. Mughabghab, Atlas of Neutron Resonances (Elsevier, Amsterdam, 2006)

    Chapter  Google Scholar 

  9. N.J. Pattenden, in Second International Atomic Energy Conference, Geneva 1958, Vol. 16 (United Nations Publication, 1958) p. 44

  10. R.B. Tattersall et al., J. Nucl. Energy A 12, 32 (1960)

    Google Scholar 

  11. H.D. Choi et al., Nucl. Sci. Eng. 177, 219 (2014)

    Article  Google Scholar 

  12. G. Noguere, P. Archier, A. Gruel, P. Leconte, D. Bernard, Nucl. Instrum. Methods A 629, 288 (2011)

    Article  ADS  Google Scholar 

  13. Y.-R. Kang, M.W. Lee, G.N. Kim, T.-I. Ro, Y. Danon, D. Williams, G. Leinweber, R.C. Block, D.P. Barry, M.J. Rapp, Nucl. Sci. Eng. 180, 86 (2015)

    Article  Google Scholar 

  14. H. Bjerrum Møller, F.J. Shore, V.L. Sailor, Nucl. Sci. Eng. 8, 183 (1960)

    Article  Google Scholar 

  15. G. Leinweber et al., Nucl. Sci. Eng. 154, 261 (2006)

    Article  Google Scholar 

  16. B. Baramsai et al., Phys. Rev. C 85, 024622 (2012)

    Article  ADS  Google Scholar 

  17. Y. Ohno, Japanese report to EANDC, Number 10 (JAEA Atomic Energy Agency, 1968) p. 1

  18. C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)

    Article  ADS  Google Scholar 

  19. S. Lo Meo et al., Eur. Phys. J. A 51, 160 (2015)

    Article  ADS  Google Scholar 

  20. P. Schillebeeckx et al., Nucl. Data Sheets 113, 3054 (2012)

    Article  ADS  Google Scholar 

  21. P.F. Mastinu, New $C_{6}D_{6}$ detectors: reduced neutron sensitivity and improved safety, n_TOF-PUB-2013-002

  22. A. Borella, G. Aerts, F. Gunsing, M. Moxon, P. Schillebeeckx, R. Wynants, Nucl. Instrum. Methods A 577, 626 (2007)

    Article  ADS  Google Scholar 

  23. M. Barbagallo et al., Eur. Phys. J. A 49, 156 (2013)

    Article  ADS  Google Scholar 

  24. A.D. Carlson et al., Nucl. Data Sheets 110, 3215 (2009)

    Article  ADS  Google Scholar 

  25. S. Marrone et al., Nucl. Instrum. Methods A 517, 389 (2004)

    Article  ADS  Google Scholar 

  26. J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)

    Article  ADS  Google Scholar 

  27. F. Bečvář, Nucl. Instrum. Methods A 417, 434 (1998)

    Article  ADS  Google Scholar 

  28. C.W. Reich, Nucl. Data Sheets 99, 753 (2003)

    Article  ADS  Google Scholar 

  29. R.G. Helmer, Nucl. Data Sheets 101, 325 (2004)

    Article  ADS  Google Scholar 

  30. H. Xiaolong, K. Mengxiao, Nucl. Data Sheets 133, 221 (2016)

    Article  Google Scholar 

  31. A. Chyzh et al., Phys. Rev. C 84, 14306 (2011)

    Article  ADS  Google Scholar 

  32. B. Baramsai et al., Phys. Rev. C 87, 44609 (2013)

    Article  ADS  Google Scholar 

  33. M. Krtička et al., AIP Conf. Proc. 831, 481 (2006)

    Article  ADS  Google Scholar 

  34. T. Kibédi et al., Nucl. Instrum. Methods A 589, 202 (2013)

    Article  ADS  Google Scholar 

  35. T.T. Böhlen et al., Nucl. Data Sheets 120, 211 (2014)

    Article  ADS  Google Scholar 

  36. A. Ferrari, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773

  37. I. Sirakov, Evaluation of neutron induced reaction cross sections on gold, JRC report 78690 EUR 25803

  38. R.L. Macklin, J. Halperin, R.R. Winters, Nucl. Instrum. Methods 164, 213 (1979)

    Article  ADS  Google Scholar 

  39. N.M. Larson, Updated Users Guide for SAMMY: Multilevel Rmatrix Fits to Neutron Data Using Bayes Equations, SAMMY, Computer Code, Report No. ORNL/TM-9179/R7, Oak Ridge National Laboratory, 2008

  40. C. Massimi et al., Eur. Phys. J. A 50, 124 (2014)

    Article  ADS  Google Scholar 

  41. P. Archier et al., Nucl. Data Sheets 118, 488 (2014)

    Article  ADS  Google Scholar 

  42. M.C. Moxon, J.B. Brisland, GEEL REFIT, A least squares fitting program for resonance analysis of neutron transmission and capture data computer code, in Tec-0630, AEA Technology, October (1991)

  43. C. Massimi et al., Phys. Rev. C 81, 044616 (2010)

    Article  ADS  Google Scholar 

  44. G.E. Mitchell, J.F. Shriner, Missing Level Corrections using Neutron Spacings, IAEA Technical Report INDC(NDS)-0561 (2009)

  45. https://doi.org/www.oecd-nea.org/tools/abstract/detail/nea-0892/

  46. J.C. Chow, F.P. Adams, D. Roubtsov, R.D. Singh, M.B. Zeller, AECL Nucl. Rev. 1, 21 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to C. Massimi.

Additional information

Communicated by A. Obertelli

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

n_TOF Collaboration., Mastromarco, M., Manna, A. et al. Cross section measurements of 155,157Gd(n,\(\gamma\)) induced by thermal and epithermal neutrons. Eur. Phys. J. A 55, 9 (2019). https://doi.org/10.1140/epja/i2019-12692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12692-7

Navigation