Abstract.
Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of \(2.01(28) \times 10^{-4}\) and \(2.17(41) \times 10^{-4}\); average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.
Similar content being viewed by others
Change history
28 March 2019
After publication of the paper, the authors noticed some errors in the list of authors and in the list of affiliations. Their correct version is given in this erratum.
References
F. Käppeler, R. Gallino, S. Bisterzo, Wako Aoki, Rev. Mod. Phys. 83, 157 (2011)
A. Deagostino et al., Future Med. Chem. 8, 899 (2016)
J.F. Beacom, M.R. Vagins, Phys. Rev. Lett. 93, 171101 (2004)
F. Rocchi, A. Guglielmelli, D.M. Castelluccio, C. Massimi, Eur. Phys. J. Nucl. Sci. Technol. 3, 21 (2017)
D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)
OECD/NEA Data Bank, The JEF-3.3 Nuclear Data Library, available online at https://doi.org/www.oecd-nea.org/dbdata/JEFF33/
K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)
S.F. Mughabghab, Atlas of Neutron Resonances (Elsevier, Amsterdam, 2006)
N.J. Pattenden, in Second International Atomic Energy Conference, Geneva 1958, Vol. 16 (United Nations Publication, 1958) p. 44
R.B. Tattersall et al., J. Nucl. Energy A 12, 32 (1960)
H.D. Choi et al., Nucl. Sci. Eng. 177, 219 (2014)
G. Noguere, P. Archier, A. Gruel, P. Leconte, D. Bernard, Nucl. Instrum. Methods A 629, 288 (2011)
Y.-R. Kang, M.W. Lee, G.N. Kim, T.-I. Ro, Y. Danon, D. Williams, G. Leinweber, R.C. Block, D.P. Barry, M.J. Rapp, Nucl. Sci. Eng. 180, 86 (2015)
H. Bjerrum Møller, F.J. Shore, V.L. Sailor, Nucl. Sci. Eng. 8, 183 (1960)
G. Leinweber et al., Nucl. Sci. Eng. 154, 261 (2006)
B. Baramsai et al., Phys. Rev. C 85, 024622 (2012)
Y. Ohno, Japanese report to EANDC, Number 10 (JAEA Atomic Energy Agency, 1968) p. 1
C. Guerrero et al., Eur. Phys. J. A 49, 27 (2013)
S. Lo Meo et al., Eur. Phys. J. A 51, 160 (2015)
P. Schillebeeckx et al., Nucl. Data Sheets 113, 3054 (2012)
P.F. Mastinu, New $C_{6}D_{6}$ detectors: reduced neutron sensitivity and improved safety, n_TOF-PUB-2013-002
A. Borella, G. Aerts, F. Gunsing, M. Moxon, P. Schillebeeckx, R. Wynants, Nucl. Instrum. Methods A 577, 626 (2007)
M. Barbagallo et al., Eur. Phys. J. A 49, 156 (2013)
A.D. Carlson et al., Nucl. Data Sheets 110, 3215 (2009)
S. Marrone et al., Nucl. Instrum. Methods A 517, 389 (2004)
J. Allison et al., Nucl. Instrum. Methods A 835, 186 (2016)
F. Bečvář, Nucl. Instrum. Methods A 417, 434 (1998)
C.W. Reich, Nucl. Data Sheets 99, 753 (2003)
R.G. Helmer, Nucl. Data Sheets 101, 325 (2004)
H. Xiaolong, K. Mengxiao, Nucl. Data Sheets 133, 221 (2016)
A. Chyzh et al., Phys. Rev. C 84, 14306 (2011)
B. Baramsai et al., Phys. Rev. C 87, 44609 (2013)
M. Krtička et al., AIP Conf. Proc. 831, 481 (2006)
T. Kibédi et al., Nucl. Instrum. Methods A 589, 202 (2013)
T.T. Böhlen et al., Nucl. Data Sheets 120, 211 (2014)
A. Ferrari, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773
I. Sirakov, Evaluation of neutron induced reaction cross sections on gold, JRC report 78690 EUR 25803
R.L. Macklin, J. Halperin, R.R. Winters, Nucl. Instrum. Methods 164, 213 (1979)
N.M. Larson, Updated Users Guide for SAMMY: Multilevel Rmatrix Fits to Neutron Data Using Bayes Equations, SAMMY, Computer Code, Report No. ORNL/TM-9179/R7, Oak Ridge National Laboratory, 2008
C. Massimi et al., Eur. Phys. J. A 50, 124 (2014)
P. Archier et al., Nucl. Data Sheets 118, 488 (2014)
M.C. Moxon, J.B. Brisland, GEEL REFIT, A least squares fitting program for resonance analysis of neutron transmission and capture data computer code, in Tec-0630, AEA Technology, October (1991)
C. Massimi et al., Phys. Rev. C 81, 044616 (2010)
G.E. Mitchell, J.F. Shriner, Missing Level Corrections using Neutron Spacings, IAEA Technical Report INDC(NDS)-0561 (2009)
https://doi.org/www.oecd-nea.org/tools/abstract/detail/nea-0892/
J.C. Chow, F.P. Adams, D. Roubtsov, R.D. Singh, M.B. Zeller, AECL Nucl. Rev. 1, 21 (2012)
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
Communicated by A. Obertelli
Electronic supplementary material
Rights and permissions
About this article
Cite this article
n_TOF Collaboration., Mastromarco, M., Manna, A. et al. Cross section measurements of 155,157Gd(n,\(\gamma\)) induced by thermal and epithermal neutrons. Eur. Phys. J. A 55, 9 (2019). https://doi.org/10.1140/epja/i2019-12692-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epja/i2019-12692-7