Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Ab initio-driven nuclear energy density functional method

A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nogga et al., Phys. Lett. B 409, 19 (1997)

    Article  ADS  Google Scholar 

  2. R.B. Wiringa et al., Phys. Rev. C 62, 014001 (2000)

    Article  ADS  Google Scholar 

  3. P. Navratil et al., J. Phys. G 36, 083101 (2009)

    Article  ADS  Google Scholar 

  4. C. Barbieri, W.H. Dickhoff, Phys. Rev. C 63, 034313 (2001)

    Article  ADS  Google Scholar 

  5. K. Kowalski et al., Phys. Rev. Lett. 92, 132501 (2004)

    Article  ADS  Google Scholar 

  6. G. Hagen et al., Phys. Rev. C 82, 034330 (2010)

    Article  ADS  Google Scholar 

  7. K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. Lett. 106, 222502 (2011)

    Article  ADS  Google Scholar 

  8. S. Binder et al., Phys. Rev. C 87, 021303 (2013)

    Article  ADS  Google Scholar 

  9. A. Cipollone, C. Barbieri, P. Navrtil, Phys. Rev. Lett. 111, 062501 (2013)

    Article  ADS  Google Scholar 

  10. L. Stolarczyk, H. Monkhorst, Mol. Phys. 108, 3067 (2010)

    Article  ADS  Google Scholar 

  11. V. Somà, T. Duguet, C. Barbieri, Phys. Rev. C 84, 064317 (2011)

    Article  ADS  Google Scholar 

  12. H. Hergert et al., Phys. Rev. Lett. 110, 242501 (2013)

    Article  ADS  Google Scholar 

  13. V. Somà et al., Phys. Rev. C 89, 061301 (2014)

    Article  ADS  Google Scholar 

  14. A. Signoracci, arXiv:1412.2696

  15. S. Binder et al., Phys. Lett. B 736, 119 (2014)

    Article  ADS  Google Scholar 

  16. H. Hergert et al., Phys. Rev. C 90, 041302 (2014)

    Article  ADS  Google Scholar 

  17. M. Pavon Valderrama, PoS QNP2012, 135 (2012)

    Google Scholar 

  18. E. Epelbaum, H. Krebs, U.-G. Meissner, arXiv:1412.0142

  19. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

  20. J. Dobaczewski et al., Phys. Rev. C 76, 054315 (2007)

    Article  ADS  Google Scholar 

  21. D. Lacroix, T. Duguet, M. Bender, Phys. Rev. C 79, 044318 (2009)

    Article  ADS  Google Scholar 

  22. M. Bender, T. Duguet, D. Lacroix, Phys. Rev. C 79, 044319 (2009)

    Article  ADS  Google Scholar 

  23. T. Duguet et al., Phys. Rev. C 79, 044320 (2009)

    Article  ADS  Google Scholar 

  24. T. Duguet, K. Bennaceur, T. Lesinski, nucl-th/0606037

  25. T. Duguet, J. Sadoudi, J. Phys. G 37, 064009 (2010)

    Article  ADS  Google Scholar 

  26. T. Duguet, The Euroschool on Exotic Beams, Vol. IV, in Lecture Notes in Physics, Vol. 879 (Springer, Berlin, 2014) arXiv:1309.0440.

  27. T.M. Henderson et al., Phys. Rev. C 89, 054305 (2014)

    Article  ADS  Google Scholar 

  28. T. Duguet, J. Phys. G: Nucl. Part. Phys. 42, 025107 (2015)

    Article  ADS  Google Scholar 

  29. T. Niksic, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011)

    Article  ADS  Google Scholar 

  30. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New-York, 1980)

  31. B. Bally, Description des noyaux impairs à l’aide d’une méthode de fonctionnelle énergie de la densité à plusieurs états de référence, PhD Thesis, Université de Bordeaux, France (2014) http://tel.archives-ouvertes.fr/tel-01023059

  32. B. Bally et al., Phys. Rev. Lett. 113, 162501 (2014)

    Article  ADS  Google Scholar 

  33. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapor, 1988)

  34. L.M. Robledo, Int. J. Mod. Phys. E 16, 337 (2007)

    Article  ADS  Google Scholar 

  35. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1106 (1953)

    ADS  Google Scholar 

  36. J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, Massachusetts, 1986)

  37. Workshop of the Espace de Structure Nucléaire Théorique (ESNT) on New developments in nuclear energy-density-functional models, Nov. 24-28, 2014, Saclay, France, T. Lesinski, T. Duguet organizers, http://esnt.cea.fr/Phocea/Page/index.php?id=41

  38. W. Satula, J. Dobaczewski, Phys. Rev. C 90, 054303 (2014)

    Article  ADS  Google Scholar 

  39. J. Sadoudi, Constraints on the nuclear energy density functional and new possible analytical forms (Université Paris XI, France, 2011), http://tel.archives-ouvertes.fr/docs/00/04/49/86/PDF/tel-00001784.pdf

  40. J. Sadoudi et al., Phys. Scr. T 154, 014013 (2013)

    Article  ADS  Google Scholar 

  41. J. Dobaczewski, K. Bennaceur, F. Raimondi, J. Phys. G 39, 125103 (2012)

    Article  Google Scholar 

  42. J. Sadoudi et al., Phys. Rev. C 88, 064326 (2013)

    Article  ADS  Google Scholar 

  43. K. Bennaceur, J. Dobaczewski, F. Raimondi, EPJ Web of Conferences 66, 02031 (2014)

    Article  Google Scholar 

  44. D. Lacroix, K. Bennaceur, Phys. Rev. C 91, 011302 (2015)

    Article  ADS  Google Scholar 

  45. R. Balian, E. Brézin, Nuovo Cimento 64, 37 (1969)

    Article  Google Scholar 

  46. W. Satula et al., Phys. Rev. C 86, 054316 (2012)

    Article  ADS  Google Scholar 

  47. T. Duguet, Phys. Rev. C 67, 044311 (2003)

    Article  ADS  Google Scholar 

  48. T. Duguet, A. Signoracci, arXiv:1512.02878

  49. G.C. Wick, Phys. Rev. 80, 268 (1950)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. K. Hara, A. Hayashi, P. Ring, Nucl. Phys. A 385, 14 (1982)

    Article  ADS  Google Scholar 

  51. K. Enami, K. Tanabe, N. Yoshinaga, Phys. Rev. C 59, 135 (1999)

    Article  ADS  Google Scholar 

  52. J.M. Yao, M. Bender, P.-H. Heenen, Phys. Rev. C 91, 024301 (2015)

    Article  ADS  Google Scholar 

  53. K. Moghrabi, M. Grasso, U. van Kolck, arXiv:1312.5949

  54. E. Engel, A primer in Density Functional Theory, in Lecture Notes in Physics, Vol. 620 (Springer, Berlin, 2003)

  55. I. Shavitt, R.J. Bartlett, Many-Body Methods in Chemistry and Physics (Cambridge University Press, 2009)

  56. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006)

    Article  ADS  Google Scholar 

  57. N. Onishi, S. Yoshida, Nucl. Phys. 80, 367 (1966)

    Article  Google Scholar 

  58. K. Hagino, G.F. Bertsch, P.G. Reinhard, Phys. Rev. C 68, 024306 (2003)

    Article  ADS  Google Scholar 

  59. V. Khoromskaia, B.N. Khoromskij, Comput. Phys. Commun. 185, 2 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  60. T. Duguet, unpublished

  61. B. Jancovici, D.H. Schiff, Nucl. Phys. 58, 678 (1964)

    Article  Google Scholar 

  62. D.M. Brink, A. Weiguny, Nucl. Phys. A 120, 59 (1968)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Duguet.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duguet, T., Bender, M., Ebran, J.P. et al. Ab initio-driven nuclear energy density functional method. Eur. Phys. J. A 51, 162 (2015). https://doi.org/10.1140/epja/i2015-15162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15162-4

Keywords

Navigation