Abstract
Heavy ion beam probing (HIBP) is a unique diagnostic technique that enables independent and simultaneous measurement of the plasma electric potential \(\varphi \) and its fluctuations \(\tilde {\varphi }\), as well as the electron density fluctuations \({{\tilde {n}}_{e}}\) and poloidal magnetic field \({{\tilde {B}}_{{{\text{pol}}}}}\) in the hot plasma region. A method for calculating the spatial resolution of the designed HIBP diagnostics for the T-15MD tokamak has been presented. The dependence of the size of the measurement area point on the width of the input slits in the energy analyzer has been studied.
REFERENCES
A. V. Melnikov, Electric Potential in Toroidal Plasmas, Springer Series in Plasma Science and Technology (Springer, Cham, 2019).
A. J. H. Donné, A. V. Melnikov, and G. Van Oost, Czech. J. Phys. 52, 1077 (2002). https://doi.org/10.1023/a:1021024005348
A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, J. M. Barcala, A. Bravo, A. A. Chmyga, G. N. Deshko, M. A. Drabinskij, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, J. Lopez, S. E. Lysenko, G. Martin, A. Molinero, J. L. De Pablos, A. Soleto, M. V. Ufimtsev, V. N. Zenin, and A. I. Zhezhera, Nucl. Fusion 57, 072004 (2017). https://doi.org/10.1088/1741-4326/aa5382
K. A. Razumova, V. F. Andreev, L. G. Eliseev, A. Ya. Kislov, R. J. La Haye, S. E. Lysenko, A. V. Melnikov, G. E. Notkin, Yu. D. Pavlov, and M. Yu. Kantor, Nucl. Fusion 51, 083024 (2011). https://doi.org/10.1088/0029-5515/51/8/083024
G. D. Conway, Plasma Phys. Controlled Fusion 50, 124026 (2008). https://doi.org/10.1088/0741-3335/50/12/124026
A. V. Melnikov, Nat. Phys. 12, 386 (2016). https://doi.org/10.1038/nphys3759
A. V. Melnikov, M. A. Drabinskiy, L. G. Eliseev, P. O. Khabanov, N. K. Kharchev, L. I. Krupnik, J. L. De Pablos, A. S. Kozachek, S. E. Lysenko, A. Molinero, G. B. Igonkina, and M. M. Sokolov, Fusion Eng. Des. 146, 850 (2019). https://doi.org/10.1016/j.fusengdes.2019.01.096
A. V. Melnikov, V. A. Vershkov, L. G. Eliseev, S. A. Grashin, A. V. Gudozhnik, L. I. Krupnik, S. E. Lysenko, V. A. Mavrin, S. V. Perfilov, D. A. She-lukhin, S. V. Soldatov, M. V. Ufimtsev, A. O. Urazbaev, G. V. Oost, and L. G. Zimeleva, Plasma Phys. Controlled Fusion 48, S87 (2006). https://doi.org/10.1088/0741-3335/48/4/s07
A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, M. V. Ufimtsev, and V. N. Zenin, Nucl. Fusion 57, 115001 (2017). https://doi.org/10.1088/1741-4326/aa796c
V. A. Vershkov, M. A. Buldakov, G. F. Subbotin, D. A. Shelukhin, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, P. O. Khabanov, M. A. Drabinskiy, D. S. Sergeev, T. B. Myalton, V. M. Trukhin, A. V. Gorshkov, I. S. Belbas, and G. M. Asadulin, Nucl. Fusion 59, 066021 (2019). https://doi.org/10.1088/1741-4326/ab15b1
Y. M. Ammosov, P. O. Khabanov, M. A. Drabinskiy, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, and S. E. Lysenko, Phys. At. Nucl. 85, 2071 (2022). https://doi.org/10.1134/s1063778822100040 [Y. M. Ammosov et al., Yad. Fiz. Inzhin. 14 (3), 278 (2023). https://doi.org/10.56304/S2079562922050049]
M. A. Drabinskiy, L. G. Eliseev, P. O. Khabanov, A. V. Melnikov, N. K. Kharchev, N. S. Sergeev, and S. A. Grashin, J. Phys.: Conf. Ser. 1383, 012004 (2019). https://doi.org/10.1088/1742-6596/1383/1/012004
A. Fujisawa, T. Ido, A. Shimizu, S. Okamura, K. Matsuoka, H. Iguchi, Y. Hamada, H. Nakano, S. Ohshima, K. Itoh, K. Hoshino, K. Shinohara, Y. Miura, Y. Nagashima, S.-I. Itoh, M. Shats, H. Xia, J. Q. Dong, L. W. Yan, K. J. Zhao, G. D. Conway, U. Stroth, A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, C. Hidalgo, G. R. Tynan, C. Holland, P. H. Diamond, G. R. Mckee, R. J. Fonck, D. K. Gupta, and P. M. Schoch, Nucl. Fusion 47, S718 (2007). https://doi.org/10.1088/0029-5515/47/10/s19
G. A. Sarancha, L. G. Eliseev, Ph. O. Khabanov, N. K. Kharchev, and A. V. Melnikov, JETP Lett. 116, 98 (2022). https://doi.org/10.1134/s0021364022601178
A. V. Melnikov, L. G. Eliseev, F. Castejón, C. Hidalgo, P. O. Khabanov, A. S. Kozachek, L. I. Krupnik, M. Liniers, S. E. Lysenko, J. L. De Pablos, S. E. Sharapov, M. V. Ufimtsev, and V. N. Zenin, Nucl. Fusion 56, 112019 (2016). https://doi.org/10.1088/0029-5515/56/11/112019
Á. Cappa, J. Varela, D. López Bruna, E. Ascasíbar, M. Liniers, L. G. Eliseev, J. M. Fontdecaba, J. M. García-Regaña, A. González-Jerez, N. K. Kharchev, F. Medina, A. V. Melnikov, S. Mulas, M. Ochando, D. Spong, and J. L. Velasco (TJ-II Team), Nucl. Fusion 61, 066019 (2021). https://doi.org/10.1088/1741-4326/abf74b
A. V. Melnikov, L. G. Eliseev, J. M. Barcala, A. Cappa, A. A. Chmyga, M. A. Drabinskiy, C. Hidalgo, P. O. Khabanov, N. K. Kharchev, A. S. Kozachek, M. Liniers, D. López-Bruna, U. Losada, S. E. Lysenko, F. Medina, A. Molinero, M. Ochando, J. L. De Pablos, and I. Pastor (TJ-II Team), Plasma Phys. Controlled Fusion 64, 054009 (2022). https://doi.org/10.1088/1361-6587/ac5b4c
Y. M. Ammosov, F. O. Khabanov, M. A. Drabinskiy, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, S. E. Lysenko, and E. A. Tsyvkunova, Phys. At. Nucl. 86, 2115 (2023). https://doi.org/10.1134/s106377882309003x [Y. M. Ammosov et al., Yad. Fiz. Inzhin. 15 (1), 80 (2024). https://doi.org/10.56304/S2079562923010037]
Ya. M. Ammosov, F. O. Khabanov, M. A. Drabinskiy, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, and S. E. Lysenko, Plasma Phys. Rep. 49, 1145 (2023). https://doi.org/10.1134/s1063780x23601050
A. V. Melnikov, A. V. Sushkov, A. M. Belov, Yu. N. Dnestrovskij, L. G. Eliseev, A. V. Gorshkov, D. P. Ivanov, N. A. Kirneva, K. V. Korobov, V. A. Krupin, S. E. Lysenko, V. S. Mukhovatov, N. A. Mustafin, S. V. Perfilov, K. A. Razumova, I. N. Roy, P. V. Savrukhin, V. S. Strelkov, E. A. Shestakov, G. N. Tilinin, and V. L. Vdovin, Fusion Eng. Des. 96–97, 306 (2015). https://doi.org/10.1016/j.fusengdes.2015.06.080
M. A. Drabinskiy, A. V. Melnikov, P. O. Khabanov, L. G. Eliseev, N. K. Kharchev, A. M. Ilin, G. A. Sarancha, and N. A. Vadimov, J. Instrum. 14, C11027 (2019). https://doi.org/10.1088/1748-0221/14/11/c11027
A. M. Ilin, P. O. Khabanov, and A. V. Melnikov, J. Phys.: Conf. Ser. 1383, 012006 (2019). https://doi.org/10.1088/1742-6596/1383/1/012006
C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, ACM Trans. Math. Software 22, 469 (1996). https://doi.org/10.1145/235815.235821
Ph. O. Khabanov, A. V. Melnikov, V. B. Minaev, and A. D. Komarov, Probl. At. Sci. Technol., Ser. Plasma Phys. 130 (6), 195 (2020). https://doi.org/10.46813/2020-130-195
Funding
This work was carried out within the framework of the state assignment of the National Research Center Kurchatov Institute. The work by Y.M. Ammosov, O.D. Krokhalev, and G.A. Sarancha was supported by the Russian Science Foundation (project no. 23-72-00042).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors of this work declare that they have no conflicts of interest.
Additional information
Translated by G. Dedkov
Publisher’s Note.
Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
AI tools may have been used in the translation or editing of this article.
Rights and permissions
About this article
Cite this article
Ammosov, Y.M., Krokhalev, O.D., Eliseev, L.G. et al. Method for Calculating Spatial Resolution of Heavy Ion Beam Probing for the T-15MD Tokamak. Phys. Atom. Nuclei 87, 1522–1528 (2024). https://doi.org/10.1134/S1063778824090035
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063778824090035