Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Method for Calculating Spatial Resolution of Heavy Ion Beam Probing for the T-15MD Tokamak

  • INTERACTION OF PLASMA, PARTICLE BEAMS, AND RADIATION WITH MATTER
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Heavy ion beam probing (HIBP) is a unique diagnostic technique that enables independent and simultaneous measurement of the plasma electric potential \(\varphi \) and its fluctuations \(\tilde {\varphi }\), as well as the electron density fluctuations \({{\tilde {n}}_{e}}\) and poloidal magnetic field \({{\tilde {B}}_{{{\text{pol}}}}}\) in the hot plasma region. A method for calculating the spatial resolution of the designed HIBP diagnostics for the T-15MD tokamak has been presented. The dependence of the size of the measurement area point on the width of the input slits in the energy analyzer has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. A. V. Melnikov, Electric Potential in Toroidal Plasmas, Springer Series in Plasma Science and Technology (Springer, Cham, 2019).

  2. A. J. H. Donné, A. V. Melnikov, and G. Van Oost, Czech. J. Phys. 52, 1077 (2002). https://doi.org/10.1023/a:1021024005348

    Article  ADS  Google Scholar 

  3. A. V. Melnikov, L. I. Krupnik, L. G. Eliseev, J. M. Barcala, A. Bravo, A. A. Chmyga, G. N. Deshko, M.  A.  Drabinskij, C. Hidalgo, P. O. Khabanov, S. M. Khrebtov, N. K. Kharchev, A. D. Komarov, A. S. Kozachek, J. Lopez, S. E. Lysenko, G. Martin, A. Molinero, J. L. De Pablos, A. Soleto, M. V. Ufimtsev, V. N. Zenin, and A. I. Zhezhera, Nucl. Fusion 57, 072004 (2017). https://doi.org/10.1088/1741-4326/aa5382

  4. K. A. Razumova, V. F. Andreev, L. G. Eliseev, A. Ya. Kislov, R. J. La Haye, S. E. Lysenko, A. V. Melnikov, G. E. Notkin, Yu. D. Pavlov, and M. Yu. Kantor, Nucl. Fusion 51, 083024 (2011). https://doi.org/10.1088/0029-5515/51/8/083024

  5. G. D. Conway, Plasma Phys. Controlled Fusion 50, 124026 (2008). https://doi.org/10.1088/0741-3335/50/12/124026

  6. A. V. Melnikov, Nat. Phys. 12, 386 (2016). https://doi.org/10.1038/nphys3759

    Article  Google Scholar 

  7. A. V. Melnikov, M. A. Drabinskiy, L. G. Eliseev, P. O. Khabanov, N. K. Kharchev, L. I. Krupnik, J. L. De Pablos, A. S. Kozachek, S. E. Lysenko, A. Molinero, G. B. Igonkina, and M. M. Sokolov, Fusion Eng. Des. 146, 850 (2019). https://doi.org/10.1016/j.fusengdes.2019.01.096

    Article  Google Scholar 

  8. A. V. Melnikov, V. A. Vershkov, L. G. Eliseev, S. A. Grashin, A. V. Gudozhnik, L. I. Krupnik, S. E. Lysenko, V. A. Mavrin, S. V. Perfilov, D. A. She-lukhin, S. V. Soldatov, M. V. Ufimtsev, A. O. Urazbaev, G. V. Oost, and L. G. Zimeleva, Plasma Phys. Controlled Fusion 48, S87 (2006). https://doi.org/10.1088/0741-3335/48/4/s07

    Article  Google Scholar 

  9. A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, M. V. Ufimtsev, and V. N. Zenin, Nucl. Fusion 57, 115001 (2017). https://doi.org/10.1088/1741-4326/aa796c

  10. V. A. Vershkov, M. A. Buldakov, G. F. Subbotin, D.  A.  Shelukhin, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, P. O. Khabanov, M. A. Drabinskiy, D. S. Sergeev, T. B. Myalton, V. M. Trukhin, A. V. Gorshkov, I. S. Belbas, and G. M. Asadulin, Nucl. Fusion 59, 066021 (2019). https://doi.org/10.1088/1741-4326/ab15b1

  11. Y. M. Ammosov, P. O. Khabanov, M. A. Drabinskiy, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, and S. E. Lysenko, Phys. At. Nucl. 85, 2071 (2022). https://doi.org/10.1134/s1063778822100040 [Y. M. Ammosov et al., Yad. Fiz. Inzhin. 14 (3), 278 (2023). https://doi.org/10.56304/S2079562922050049]

    Article  Google Scholar 

  12. M. A. Drabinskiy, L. G. Eliseev, P. O. Khabanov, A. V. Melnikov, N. K. Kharchev, N. S. Sergeev, and S. A. Grashin, J. Phys.: Conf. Ser. 1383, 012004 (2019). https://doi.org/10.1088/1742-6596/1383/1/012004

  13. A. Fujisawa, T. Ido, A. Shimizu, S. Okamura, K. Matsuoka, H. Iguchi, Y. Hamada, H. Nakano, S. Ohshima, K. Itoh, K. Hoshino, K. Shinohara, Y. Miura, Y. Nagashima, S.-I. Itoh, M. Shats, H. Xia, J. Q. Dong, L. W. Yan, K. J. Zhao, G. D. Conway, U. Stroth, A. V. Melnikov, L. G. Eliseev, S. E. Lysenko, S. V. Perfilov, C. Hidalgo, G. R. Tynan, C. Holland, P. H. Diamond, G. R. Mckee, R. J. Fonck, D. K. Gupta, and P. M. Schoch, Nucl. Fusion 47, S718 (2007). https://doi.org/10.1088/0029-5515/47/10/s19

    Article  Google Scholar 

  14. G. A. Sarancha, L. G. Eliseev, Ph. O. Khabanov, N. K. Kharchev, and A. V. Melnikov, JETP Lett. 116, 98 (2022). https://doi.org/10.1134/s0021364022601178

    Article  ADS  Google Scholar 

  15. A. V. Melnikov, L. G. Eliseev, F. Castejón, C. Hidalgo, P. O. Khabanov, A. S. Kozachek, L. I. Krupnik, M. Liniers, S. E. Lysenko, J. L. De Pablos, S. E. Sharapov, M. V. Ufimtsev, and V. N. Zenin, Nucl. Fusion 56, 112019 (2016). https://doi.org/10.1088/0029-5515/56/11/112019

  16. Á. Cappa, J. Varela, D. López Bruna, E. Ascasíbar, M. Liniers, L. G. Eliseev, J. M. Fontdecaba, J. M. García-Regaña, A. González-Jerez, N. K. Kharchev, F. Medina, A. V. Melnikov, S. Mulas, M. Ochando, D. Spong, and J. L. Velasco (TJ-II Team), Nucl. Fusion 61, 066019 (2021). https://doi.org/10.1088/1741-4326/abf74b

  17. A. V. Melnikov, L. G. Eliseev, J. M. Barcala, A. Cappa, A. A. Chmyga, M. A. Drabinskiy, C. Hidalgo, P. O. Khabanov, N. K. Kharchev, A. S. Kozachek, M. Liniers, D. López-Bruna, U. Losada, S. E. Lysenko, F. Medina, A. Molinero, M. Ochando, J. L. De Pablos, and I. Pastor (TJ-II Team), Plasma Phys. Controlled Fusion 64, 054009 (2022). https://doi.org/10.1088/1361-6587/ac5b4c

  18. Y. M. Ammosov, F. O. Khabanov, M. A. Drabinskiy, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, S. E. Lysenko, and E. A. Tsyvkunova, Phys. At. Nucl. 86, 2115 (2023). https://doi.org/10.1134/s106377882309003x [Y. M. Ammosov et al., Yad. Fiz. Inzhin. 15 (1), 80 (2024). https://doi.org/10.56304/S2079562923010037]

    Article  Google Scholar 

  19. Ya. M. Ammosov, F. O. Khabanov, M. A. Drabinskiy, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, and S. E. Lysenko, Plasma Phys. Rep. 49, 1145 (2023). https://doi.org/10.1134/s1063780x23601050

    Article  ADS  Google Scholar 

  20. A. V. Melnikov, A. V. Sushkov, A. M. Belov, Yu. N. Dnestrovskij, L. G. Eliseev, A. V. Gorshkov, D. P. Ivanov, N. A. Kirneva, K. V. Korobov, V. A. Krupin, S. E. Lysenko, V. S. Mukhovatov, N. A. Mustafin, S. V. Perfilov, K. A. Razumova, I. N. Roy, P. V. Savrukhin, V. S. Strelkov, E. A. Shestakov, G. N. Tilinin, and V. L. Vdovin, Fusion Eng. Des. 96–97, 306 (2015). https://doi.org/10.1016/j.fusengdes.2015.06.080

    Article  Google Scholar 

  21. M. A. Drabinskiy, A. V. Melnikov, P. O. Khabanov, L. G. Eliseev, N. K. Kharchev, A. M. Ilin, G. A. Sarancha, and N. A. Vadimov, J. Instrum. 14, C11027 (2019). https://doi.org/10.1088/1748-0221/14/11/c11027

  22. A. M. Ilin, P. O. Khabanov, and A. V. Melnikov, J. Phys.: Conf. Ser. 1383, 012006 (2019). https://doi.org/10.1088/1742-6596/1383/1/012006

  23. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, ACM Trans. Math. Software 22, 469 (1996). https://doi.org/10.1145/235815.235821

    Article  MathSciNet  Google Scholar 

  24. Ph. O. Khabanov, A. V. Melnikov, V. B. Minaev, and A. D. Komarov, Probl. At. Sci. Technol., Ser. Plasma Phys. 130 (6), 195 (2020). https://doi.org/10.46813/2020-130-195

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state assignment of the National Research Center Kurchatov Institute. The work by Y.M. Ammosov, O.D. Krokhalev, and G.A. Sarancha was supported by the Russian Science Foundation (project no. 23-72-00042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Ammosov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammosov, Y.M., Krokhalev, O.D., Eliseev, L.G. et al. Method for Calculating Spatial Resolution of Heavy Ion Beam Probing for the T-15MD Tokamak. Phys. Atom. Nuclei 87, 1522–1528 (2024). https://doi.org/10.1134/S1063778824090035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778824090035

Keywords: