Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Optical Identification and Spectroscopic Redshift Measurements of 216 Galaxy Clusters from the SRG/eROSITA All-Sky Survey

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of the optical identification and spectroscopic redshift measurements of 216 galaxy clusters detected in the SRG/eROSITA all-sky X-ray survey. The spectroscopic observations were performed in 2020–2023 with the 6-m BTA telescope at the Special Astrophysical Observatory of the Russian Academy of Sciences, the 2.5-m telescope at the Caucasus Mountain Observatory of the Sternberg Astronomical Institute of the Moscow State University, the 1.6-m AZT-33IK telescope at the Sayan Solar Observatory of the Institute of Solar–Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences, and the 1.5-m Russian–Turkish telescope (RTT-150) at the TÜBİTAK Observatory. For all of the galaxy clusters presented here the spectroscopic redshift measurements have been obtained for the first time. Of these, 139 galaxy clusters have been detected for the first time in the SRG/eROSITA survey and 22 galaxy clusters are at redshifts \(z_{\textrm{spec}}\gtrsim 0.7\), including three at \(z_{\textrm{spec}}\gtrsim 1\). Deep direct images with the rizJK filters have also been obtained for four distant galaxy clusters at \(z_{\textrm{spec}}>0.7\). For these observations we chose the most massive clusters and, therefore, most of the galaxy clusters presented here with the spectroscopic redshifts measured by us will most likely enter in future into the cosmological samples of galaxy clusters from the SRG/eROSITA survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. https://ned.ipac.caltech.edu/

  2. https://www.srg.cosmos.ru/

  3. https://www.sao.ru/hq/lsfvo/devices_rus.html

  4. http://lnfm1.sai.msu.ru/kgo/instruments/tds

  5. http://hea.iki.rssi.ru/rtt150/en/index.php?page=tfosc

  6. https://www.eso.org/sci/observing/tools/standards.html

  7. https://iraf-community.github.io/

  8. http://stsdas.stsci.edu/pyraf/doc.old/pyraf_tutorial/

  9. https://cds.u-strasbg.fr/

  10. https://ned.ipac.caltech.edu/

REFERENCES

  1. A. G. Adame, J. Aguilar, S. Ahlen, S. Alam, G. Aldering, et al. (DESI Collab.), arXiv: 2306.06308 (2023).

  2. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 571, A29 (2014a).

    Google Scholar 

  3. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 571, A20 (2014b).

    Google Scholar 

  4. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 581, A14 (2015a).

    Google Scholar 

  5. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 582, A29 (2015b).

    Google Scholar 

  6. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 594, A27 (2016a).

    Google Scholar 

  7. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 586, A139 (2016b).

    Google Scholar 

  8. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 594, A24 (2016c).

    Google Scholar 

  9. V. L. Afanasiev and A. V. Moiseev, Astron. Lett. 31, 194 (2005).

    Article  ADS  Google Scholar 

  10. V. L. Afanasiev and A. V. Moiseev, Baltic Astron. 20, 363 (2011).

    ADS  Google Scholar 

  11. V. L. Afanasiev, S. N. Dodonov, V. R. Amirkhanyan, and A. V. Moiseev, Astrophys. Bull. 71, 479 (2016).

    Article  ADS  Google Scholar 

  12. R. Ahumada, C. Allende Prieto, A. Almeida, F. Anders, S. F. Anderson, B. H. Andrews, et al., Astrophys. J. Suppl. Ser. 249, 3 (2020).

    Article  ADS  Google Scholar 

  13. L. E. Bleem, S. Bocquet, B. Stalder, M. D. Gladders, P. A. R. Ade, S. W. Allen, et al., Astrophys. J. Suppl. Ser. 247, 25 (2020).

    Article  ADS  Google Scholar 

  14. R. A. Burenin, Astron. Lett. 43, 507 (2017).

    Article  ADS  Google Scholar 

  15. R. A. Burenin, Astron. Lett. 48, 153 (2022).

    Article  ADS  Google Scholar 

  16. R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, V. S. Vorob’ev, et al., Astron. Lett. 42, 295 (2016).

    Article  ADS  Google Scholar 

  17. R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, I. A. Zaznobin, G. A. Khorunzhev, M. V. Eselevich, et al., Astron. Lett. 44, 297 (2018).

    Article  ADS  Google Scholar 

  18. R. A. Burenin, I. F. Bikmaev, M. R. Gilfanov, A. A. Grokhovskaya, S. N. Dodonov, M. V. Eselevich, et al., Astron. Lett. 47, 443 (2021).

    Article  ADS  Google Scholar 

  19. R. A. Burenin, I. A. Zaznobin, P. S. Medvedev, M. R. Gilfanov, S. S. Kotov, R. I. Uklein, et al., Astron. Lett. 48, 702 (2022).

    Article  ADS  Google Scholar 

  20. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arXiv: 1612.05560 (2016).

  21. E. Churazov, A. Vikhlinin, and R. Sunyaev, Mon. Not. R. Astron. Soc. 450, 1984 (2015).

    Article  ADS  Google Scholar 

  22. M. Colless, B. A. Peterson, C. Jackson, J. A. Peacock, S. Cole, P. Norberg, et al., astro-ph/0306581 (2003).

  23. H. Dahle, K. Pedersen, P. B. Lilje, S. J. Maddox, and N. Kaiser, Astrophys. J. 591, 662 (2003).

    Article  ADS  Google Scholar 

  24. A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al., Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  25. A. V. Dodin, N. I. Shatsky, A. A. Belinski, K. E. Atapin, M. A. Burlak, S. G. Zheltoukhov, et al., Astron. Lett. 47, 661 (2021).

    Article  ADS  Google Scholar 

  26. H. Ebeling, A. C. Edge, and J. P. Henry, Astrophys. J. 553, 668 (2001).

    Article  ADS  Google Scholar 

  27. R. R. Gal, P. A. A. Lopes, R. R. de Carvalho, J. L. Kohl-Moreira, H. V. Capelato, and S. G. Djorgovski, Astron. J. 137, 2981 (2009).

    Article  ADS  Google Scholar 

  28. A. H. Gonzalez, D. P. Gettings, M. Brodwin, P. R. M. Eisenhardt, S. A. Stanford, D. Wylezalek, et al., Astrophys. J. Suppl. Ser. 240, 33 (2019).

    Article  ADS  Google Scholar 

  29. M. Hilton, C. Sifón, S. Naess, M. Madhavacheril, M. Oguri, E. Rozo, et al., Astrophys. J. Suppl. Ser. 253, 3 (2021).

    Article  ADS  Google Scholar 

  30. D. H. Jones, M. A. Read, W. Saunders, M. Colless, T. Jarrett, Q. A. Parker, et al., Mon. Not. R. Astron. Soc. 399, 683 (2009).

    Article  ADS  Google Scholar 

  31. R. C. Kennicutt, Jr., Ann. Rev. Astron. Astrophys. 36, 189 (1998).

    Article  ADS  Google Scholar 

  32. P. A. A. Lopes, R. R. de Carvalho, R. R. Gal, S. G. Djorgovski, S. C. Odewahn, A. A. Mahabal, et al., Astron. J. 128, 1017 (2004).

    Article  ADS  Google Scholar 

  33. N. Mehrtens, A. K. Romer, M. Hilton, E. J. Lloyd-Davies, C. J. Miller, S. A. Stanford, et al., Mon. Not. R. Astron. Soc. 423, 1024 (2012).

    Article  ADS  Google Scholar 

  34. A. E. Nadjip, A. M. Tatarnikov, D. W. Toomey, N. I. Shatsky, A. M. Cherepashchuk, S. A. Lamzin, et al., Astrophys. Bull. 72, 349 (2017).

    Article  ADS  Google Scholar 

  35. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  36. S. A. Potanin, A. A. Belinski, A. V. Dodin, S. G. Zheltoukhov, V. Y. Lander, K. A. Postnov, et al., Astron. Lett. 46, 836 (2020).

    Article  ADS  Google Scholar 

  37. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  38. E. S. Rykoff, E. Rozo, M. T. Busha, C. E. Cunha, A. Finoguenov, A. Evrard, et al., Astrophys. J. 785, 104 (2014).

    Article  ADS  Google Scholar 

  39. E. F. Schlafly, G. Green, D. P. Finkbeiner, M. Jurić, H. W. Rix, N. F. Martin, et al., Astrophys. J. 789, 15 (2014).

    Article  ADS  Google Scholar 

  40. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  41. A. M. Tatarnikov, S. G. Zheltoukhov, N. I. Shatsky, M. A. Burlak, N. A. Maslennikova, and A. A. Vakhonin, Astrophys. Bull. 78, 384 (2023).

    Article  ADS  Google Scholar 

  42. A. Vikhlinin, B. R. McNamara, W. Forman, C. Jones, H. Quintana, and A. Hornstrup, Astrophys. J. 502, 558 (1998).

    Article  ADS  Google Scholar 

  43. A. Vikhlinin, A. V. Kravtsov, R. A. Burenin, H. Ebeling, W. R. Forman, A. Hornstrup, et al., Astrophys. J. 692, 1060 (2009).

    Article  ADS  Google Scholar 

  44. W. Voges, B. Aschenbach, T. Boller, H. Bräuninger, U. Briel, W. Burkert, et al., Astron. Astrophys. 349, 389 (1999).

    ADS  Google Scholar 

  45. V. S. Vorobyev, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, S. N. Dodonov, R. Y. Zhuchkov, et al., Astron. Lett. 42, 63 (2016).

    Article  ADS  Google Scholar 

  46. Z. L. Wen, J. L. Han, and F. S. Liu, Astrophys. J. Suppl. Ser. 199, 34 (2012).

    Article  ADS  Google Scholar 

  47. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  48. Z. S. Yuan, J. L. Han, and Z. L. Wen, Mon. Not. R. Astron. Soc. 513, 3013 (2022).

    Article  ADS  Google Scholar 

  49. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, V. V. Konoplev, et al., Astron. Lett. 45, 49 (2019).

    Article  ADS  Google Scholar 

  50. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, et al., Astron. Lett. 46, 79 (2020).

    Article  ADS  Google Scholar 

  51. I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, et al., Astron. Lett. 47, 61 (2021a).

    Article  ADS  Google Scholar 

  52. I. A. Zaznobin, R. A. Burenin, A. R. Lyapin, G. A. Khorunzhev, V. L. Afanasiev, A. A. Grokhovskaya, et al., Astron. Lett. 47, 141 (2021b).

    Article  ADS  Google Scholar 

  53. I. A. Zaznobin et al., Astron. Lett. 49, 431 (2023).

    Article  ADS  Google Scholar 

  54. H. Zou, J. Sui, S. Xue, X. Zhou, J. Ma, Z. Zhou, et al., Res. Astron. Astrophys. 22, 065001 (2022).

  55. F. Zwicky, E. Herzog, and P. Wild, Catalogue of Galaxies and of Clusters of Galaxies (California Inst. Technol., Pasadena, CA, 1963), Vol. 2.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by RSF grant no. 21-12-00210. The observations at the SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation. The instrumentation is updated within the National Project ‘‘Science and Universities’’. The work of SD, SK, EM, AM, DO, RU, and ESh to obtain the observational data was performed within the State assignment of SAO RAS approved by the Ministry of Science and Higher Education of the Russian Federation. The work of ME was supported by the Ministry of Education and Science of Russia. The AZT-33IK results were obtained using the equipment of the Angara sharing center (http://ckp-rf.ru/ckp/3056/). This work was supported in part by the Program for the Advancement of the Moscow State University (the scientific and educational school ‘‘Fundamental and Applied Space Research’’). We are grateful to TÜBİTAK, the Space Research Institute, the Kazan Federal University, and the Academy of Sciences of Tatarstan for their partial support in using RTT-150 (the Russian–Turkish 1.5-m telescope in Antalya). The work of IKh, EI, and NS was supported by subsidy no. FZSM-2023-0015 of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University for the State assignment in the sphere of scientific activities. In this study we used observational data from the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by the Space Research Institute within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG spacecraft was designed, built, launched, and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The SRG/eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The eROSITA data used in this work were processed using the eSASS software developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium. In this study we used the NASA/IPAC Extragalactic Database (NED) operated by the Jet Propulsion Laboratory of the California Institute of Technology under contract with the National Aeronautics and Space Administration. In this paper we used the data from the photometric DESI survey obtained at the Blanco Telescope of the Cerro Tololo Inter-American Observatory, the Bok Telescope of the Steward Observatory of the University of Arizona, and the Mayall Telescope of the Kitt Peak National Observatory.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zaznobin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaznobin, I.A., Burenin, R.A., Belinski, A.A. et al. Optical Identification and Spectroscopic Redshift Measurements of 216 Galaxy Clusters from the SRG/eROSITA All-Sky Survey. Astron. Lett. 49, 599–620 (2023). https://doi.org/10.1134/S1063773723110105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723110105

Keywords:

Navigation