Abstract
We present the results of the optical identification and spectroscopic redshift measurements of 216 galaxy clusters detected in the SRG/eROSITA all-sky X-ray survey. The spectroscopic observations were performed in 2020–2023 with the 6-m BTA telescope at the Special Astrophysical Observatory of the Russian Academy of Sciences, the 2.5-m telescope at the Caucasus Mountain Observatory of the Sternberg Astronomical Institute of the Moscow State University, the 1.6-m AZT-33IK telescope at the Sayan Solar Observatory of the Institute of Solar–Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences, and the 1.5-m Russian–Turkish telescope (RTT-150) at the TÜBİTAK Observatory. For all of the galaxy clusters presented here the spectroscopic redshift measurements have been obtained for the first time. Of these, 139 galaxy clusters have been detected for the first time in the SRG/eROSITA survey and 22 galaxy clusters are at redshifts \(z_{\textrm{spec}}\gtrsim 0.7\), including three at \(z_{\textrm{spec}}\gtrsim 1\). Deep direct images with the rizJK filters have also been obtained for four distant galaxy clusters at \(z_{\textrm{spec}}>0.7\). For these observations we chose the most massive clusters and, therefore, most of the galaxy clusters presented here with the spectroscopic redshifts measured by us will most likely enter in future into the cosmological samples of galaxy clusters from the SRG/eROSITA survey.
Notes
https://ned.ipac.caltech.edu/
https://www.srg.cosmos.ru/
https://www.sao.ru/hq/lsfvo/devices_rus.html
http://lnfm1.sai.msu.ru/kgo/instruments/tds
http://hea.iki.rssi.ru/rtt150/en/index.php?page=tfosc
https://www.eso.org/sci/observing/tools/standards.html
https://iraf-community.github.io/
http://stsdas.stsci.edu/pyraf/doc.old/pyraf_tutorial/
https://cds.u-strasbg.fr/
https://ned.ipac.caltech.edu/
REFERENCES
A. G. Adame, J. Aguilar, S. Ahlen, S. Alam, G. Aldering, et al. (DESI Collab.), arXiv: 2306.06308 (2023).
P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 571, A29 (2014a).
P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 571, A20 (2014b).
P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 581, A14 (2015a).
P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 582, A29 (2015b).
P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 594, A27 (2016a).
P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 586, A139 (2016b).
P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, et al. (Planck Collab.), Astron. Astrophys. 594, A24 (2016c).
V. L. Afanasiev and A. V. Moiseev, Astron. Lett. 31, 194 (2005).
V. L. Afanasiev and A. V. Moiseev, Baltic Astron. 20, 363 (2011).
V. L. Afanasiev, S. N. Dodonov, V. R. Amirkhanyan, and A. V. Moiseev, Astrophys. Bull. 71, 479 (2016).
R. Ahumada, C. Allende Prieto, A. Almeida, F. Anders, S. F. Anderson, B. H. Andrews, et al., Astrophys. J. Suppl. Ser. 249, 3 (2020).
L. E. Bleem, S. Bocquet, B. Stalder, M. D. Gladders, P. A. R. Ade, S. W. Allen, et al., Astrophys. J. Suppl. Ser. 247, 25 (2020).
R. A. Burenin, Astron. Lett. 43, 507 (2017).
R. A. Burenin, Astron. Lett. 48, 153 (2022).
R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, V. S. Vorob’ev, et al., Astron. Lett. 42, 295 (2016).
R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, I. A. Zaznobin, G. A. Khorunzhev, M. V. Eselevich, et al., Astron. Lett. 44, 297 (2018).
R. A. Burenin, I. F. Bikmaev, M. R. Gilfanov, A. A. Grokhovskaya, S. N. Dodonov, M. V. Eselevich, et al., Astron. Lett. 47, 443 (2021).
R. A. Burenin, I. A. Zaznobin, P. S. Medvedev, M. R. Gilfanov, S. S. Kotov, R. I. Uklein, et al., Astron. Lett. 48, 702 (2022).
K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arXiv: 1612.05560 (2016).
E. Churazov, A. Vikhlinin, and R. Sunyaev, Mon. Not. R. Astron. Soc. 450, 1984 (2015).
M. Colless, B. A. Peterson, C. Jackson, J. A. Peacock, S. Cole, P. Norberg, et al., astro-ph/0306581 (2003).
H. Dahle, K. Pedersen, P. B. Lilje, S. J. Maddox, and N. Kaiser, Astrophys. J. 591, 662 (2003).
A. Dey, D. J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al., Astron. J. 157, 168 (2019).
A. V. Dodin, N. I. Shatsky, A. A. Belinski, K. E. Atapin, M. A. Burlak, S. G. Zheltoukhov, et al., Astron. Lett. 47, 661 (2021).
H. Ebeling, A. C. Edge, and J. P. Henry, Astrophys. J. 553, 668 (2001).
R. R. Gal, P. A. A. Lopes, R. R. de Carvalho, J. L. Kohl-Moreira, H. V. Capelato, and S. G. Djorgovski, Astron. J. 137, 2981 (2009).
A. H. Gonzalez, D. P. Gettings, M. Brodwin, P. R. M. Eisenhardt, S. A. Stanford, D. Wylezalek, et al., Astrophys. J. Suppl. Ser. 240, 33 (2019).
M. Hilton, C. Sifón, S. Naess, M. Madhavacheril, M. Oguri, E. Rozo, et al., Astrophys. J. Suppl. Ser. 253, 3 (2021).
D. H. Jones, M. A. Read, W. Saunders, M. Colless, T. Jarrett, Q. A. Parker, et al., Mon. Not. R. Astron. Soc. 399, 683 (2009).
R. C. Kennicutt, Jr., Ann. Rev. Astron. Astrophys. 36, 189 (1998).
P. A. A. Lopes, R. R. de Carvalho, R. R. Gal, S. G. Djorgovski, S. C. Odewahn, A. A. Mahabal, et al., Astron. J. 128, 1017 (2004).
N. Mehrtens, A. K. Romer, M. Hilton, E. J. Lloyd-Davies, C. J. Miller, S. A. Stanford, et al., Mon. Not. R. Astron. Soc. 423, 1024 (2012).
A. E. Nadjip, A. M. Tatarnikov, D. W. Toomey, N. I. Shatsky, A. M. Cherepashchuk, S. A. Lamzin, et al., Astrophys. Bull. 72, 349 (2017).
M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 650, A42 (2021).
S. A. Potanin, A. A. Belinski, A. V. Dodin, S. G. Zheltoukhov, V. Y. Lander, K. A. Postnov, et al., Astron. Lett. 46, 836 (2020).
P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).
E. S. Rykoff, E. Rozo, M. T. Busha, C. E. Cunha, A. Finoguenov, A. Evrard, et al., Astrophys. J. 785, 104 (2014).
E. F. Schlafly, G. Green, D. P. Finkbeiner, M. Jurić, H. W. Rix, N. F. Martin, et al., Astrophys. J. 789, 15 (2014).
R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., Astron. Astrophys. 656, A132 (2021).
A. M. Tatarnikov, S. G. Zheltoukhov, N. I. Shatsky, M. A. Burlak, N. A. Maslennikova, and A. A. Vakhonin, Astrophys. Bull. 78, 384 (2023).
A. Vikhlinin, B. R. McNamara, W. Forman, C. Jones, H. Quintana, and A. Hornstrup, Astrophys. J. 502, 558 (1998).
A. Vikhlinin, A. V. Kravtsov, R. A. Burenin, H. Ebeling, W. R. Forman, A. Hornstrup, et al., Astrophys. J. 692, 1060 (2009).
W. Voges, B. Aschenbach, T. Boller, H. Bräuninger, U. Briel, W. Burkert, et al., Astron. Astrophys. 349, 389 (1999).
V. S. Vorobyev, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, S. N. Dodonov, R. Y. Zhuchkov, et al., Astron. Lett. 42, 63 (2016).
Z. L. Wen, J. L. Han, and F. S. Liu, Astrophys. J. Suppl. Ser. 199, 34 (2012).
E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).
Z. S. Yuan, J. L. Han, and Z. L. Wen, Mon. Not. R. Astron. Soc. 513, 3013 (2022).
I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, V. V. Konoplev, et al., Astron. Lett. 45, 49 (2019).
I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, et al., Astron. Lett. 46, 79 (2020).
I. A. Zaznobin, R. A. Burenin, I. F. Bikmaev, I. M. Khamitov, G. A. Khorunzhev, A. R. Lyapin, et al., Astron. Lett. 47, 61 (2021a).
I. A. Zaznobin, R. A. Burenin, A. R. Lyapin, G. A. Khorunzhev, V. L. Afanasiev, A. A. Grokhovskaya, et al., Astron. Lett. 47, 141 (2021b).
I. A. Zaznobin et al., Astron. Lett. 49, 431 (2023).
H. Zou, J. Sui, S. Xue, X. Zhou, J. Ma, Z. Zhou, et al., Res. Astron. Astrophys. 22, 065001 (2022).
F. Zwicky, E. Herzog, and P. Wild, Catalogue of Galaxies and of Clusters of Galaxies (California Inst. Technol., Pasadena, CA, 1963), Vol. 2.
ACKNOWLEDGMENTS
This work was supported by RSF grant no. 21-12-00210. The observations at the SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation. The instrumentation is updated within the National Project ‘‘Science and Universities’’. The work of SD, SK, EM, AM, DO, RU, and ESh to obtain the observational data was performed within the State assignment of SAO RAS approved by the Ministry of Science and Higher Education of the Russian Federation. The work of ME was supported by the Ministry of Education and Science of Russia. The AZT-33IK results were obtained using the equipment of the Angara sharing center (http://ckp-rf.ru/ckp/3056/). This work was supported in part by the Program for the Advancement of the Moscow State University (the scientific and educational school ‘‘Fundamental and Applied Space Research’’). We are grateful to TÜBİTAK, the Space Research Institute, the Kazan Federal University, and the Academy of Sciences of Tatarstan for their partial support in using RTT-150 (the Russian–Turkish 1.5-m telescope in Antalya). The work of IKh, EI, and NS was supported by subsidy no. FZSM-2023-0015 of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University for the State assignment in the sphere of scientific activities. In this study we used observational data from the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by the Space Research Institute within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG spacecraft was designed, built, launched, and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The SRG/eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The eROSITA data used in this work were processed using the eSASS software developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium. In this study we used the NASA/IPAC Extragalactic Database (NED) operated by the Jet Propulsion Laboratory of the California Institute of Technology under contract with the National Aeronautics and Space Administration. In this paper we used the data from the photometric DESI survey obtained at the Blanco Telescope of the Cerro Tololo Inter-American Observatory, the Bok Telescope of the Steward Observatory of the University of Arizona, and the Mayall Telescope of the Kitt Peak National Observatory.
Funding
This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors of this work declare that they have no conflicts of interest.
Additional information
Translated by V. Astakhov
Publisher’s Note.
Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zaznobin, I.A., Burenin, R.A., Belinski, A.A. et al. Optical Identification and Spectroscopic Redshift Measurements of 216 Galaxy Clusters from the SRG/eROSITA All-Sky Survey. Astron. Lett. 49, 599–620 (2023). https://doi.org/10.1134/S1063773723110105
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063773723110105