Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The axial zone of avoidance in the globular cluster system and the distance to the galactic center

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have checked the existence of a zone of avoidance oriented along the Galactic rotation axis in the globular cluster (GC) system of the Galaxy and performed a parametrization of this zone in the axisymmetric approximation. The possibility of the presence of such a structure in the shape of a double cone has previously been discussed in the literature. We show that an unambiguous conclusion about the existence of an axial zone of avoidance and its parameters cannot be reached based on the maximization of the formal cone of avoidance due to the discreteness of the GC system. The ambiguity allows the construction of the representation of voids in the GC system by a set of largest-radius meridional cylindrical voids to be overcome. As a result of our structural study of this set for northern and southern GCs independently, we have managed to identify ordered, vertically connected axial zones of avoidance with similar characteristics. Our mapping of the combined axial zone of avoidance in the separate and joint analyses of the northern and southern voids shows that this structure is traceable at |Z| ≳ 1 kpc, it is similar in shape to a double cone whose axis crosses the region of greatest GC number density, and the southern cavity of the zone has a less regular shape than the northern one. By modeling the distribution ofGalactocentric latitudes forGCs, we have determined the half-angle of the cone of avoidance α0 = 15◦. 0−4◦. 1 +2◦. 1 and the distance to the Galactic center R 0 = 7.3 ± 0.5 kpc (in the scale of the Harris (1996) catalog, the 2010 version) as the distance from the Sun to the point of intersection of the cone axis with the center–anticenter line. A correction to the calibration of the GC distance scale obtained in the same version of the Harris catalog from Galactic objects leads to an estimate of R 0 = 7.2±0.5|stat ±0.3|calib kpc. The systematic error in R 0 due to the observational incompleteness of GCs for this method is insignificant. The probability that the zone of avoidance at the characteristics found is random in nature is ≤2%. We have revealed evidence for the elongation of the zone of avoidance in the direction orthogonal to the center–anticenter axis, which, just as the north–south difference in this zone, may be attributable to the influence of the Magellanic Clouds. The detectability of similar zones of avoidance in the GC systems of external galaxies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Agekyan, Probability Theory for Astronomers and Physicists (Nauka, Moscow, 1974) [in Russian].

    MATH  Google Scholar 

  2. C. Allen, E. Moreno, and B. Pichardo, Astrophys. J. 652, 1150 (2006).

    Article  ADS  Google Scholar 

  3. C. Allen, E. Moreno, and B. Pichardo, Astrophys. J. 674, 237 (2008).

    Article  ADS  Google Scholar 

  4. K. M. Ashman and S. E. Zepf, Globular Cluster Systems (Cambridge Univ. Press, Cambridge, UK, 2008).

    Google Scholar 

  5. B. S. Avedisova, Astron. Rep. 49, 435 (2005).

    Article  ADS  Google Scholar 

  6. E. Bica, C. Bonatto, B. Barbuy, and S. Ortolani, Astron. Astrophys. 450, 105 (2006).

    Article  ADS  Google Scholar 

  7. J. Bland-Hawthorn and O. Gerhard, Ann. Rev. Astron. Astrophys. 54, 529 (2016).

    Article  ADS  Google Scholar 

  8. V. V. Bobylev, Astron. Lett. 39, 95 (2013).

    Article  ADS  Google Scholar 

  9. T. V. Borkova and V. A. Marsakov, Astron. Rep. 44, 665 (2000).

    Article  ADS  Google Scholar 

  10. R. L. Branham, Jr., Astrophys. Space. Sci. 353, 179 (2014).

    Article  ADS  Google Scholar 

  11. D. I. Casetti-Dinescu, T. M. Girard, L. Jílková, W. F. van Altena, F. Podestá, and C. E. López, Astron. J. 146, 33 (2013).

    Article  ADS  Google Scholar 

  12. T. Foster and B. Cooper, ASP Conf. Ser. 438, 16 (2010).

    ADS  Google Scholar 

  13. C. Francis and E. Anderson, Mon. Not. R. Astron. Soc. 441, 1105 (2014).

    Article  ADS  Google Scholar 

  14. C. S. Frenk and S. D. M. White, Mon. Not. R. Astron. Soc. 198, 173 (1982).

    Article  ADS  Google Scholar 

  15. R. Genzel, F. Eisenhauer, and S. Gillessen, Rev. Mod. Phys. 82, 3121 (2010).

    Article  ADS  Google Scholar 

  16. W. E. Harris, in Star Clusters, Proceedings of the 85th IAU Symposium, Victoria, BC, Canada, August 27–30, 1979, Ed. by J. E. Hesser (Reidel, Dordrecht, 1980), p.81.

  17. W. E. Harris, Astron. J. 112, 1487 (1996); arXiv:1012.3224 (2010).

    Article  ADS  Google Scholar 

  18. W. E. Harris, Saas-Fee Advanced Courses, Ed. by L. Labhardt and B. Binggeli (Springer, Berlin, 2001), Vol. 28, p.223.

    Article  ADS  Google Scholar 

  19. F. J. Kerr and D. Lynden-Bell, Mon. Not. R. Astron. Soc. 221, 1023 (1986).

    Article  ADS  Google Scholar 

  20. R. C. Kraan-Korteweg and O. Lahav, Astron. Astrophys. Rev. 10, 211 (2000).

    Article  ADS  Google Scholar 

  21. A. V. Loktin and V. A. Marsakov, Lectures on Stellar Astronomy (Yuzh. Fed. Univ., Rostovon-Don, 2009) [in Russian]. http://www.astronet. ru/db/msg/1245721/index.html

    Google Scholar 

  22. W. J. Maciel, Astrophys. Space. Sci. 206, 285 (1993).

    Article  ADS  Google Scholar 

  23. I. I. Nikiforov, Astrophysics 42, 300 (1999).

    Article  ADS  Google Scholar 

  24. I. I. Nikiforov, Cand. Sci. (Phys. Math.) Dissertation (SPb. State Univ., St. Petersburg, 2003). http://www.astro.spbu.ru/?q=nii

    Google Scholar 

  25. I. I. Nikiforov, ASP Conf. Ser. 316, 199 (2004).

    ADS  Google Scholar 

  26. I. I. Nikiforov, Astron. Astrophys. Trans. 27, 537 (2012).

    ADS  Google Scholar 

  27. I. I. Nikiforov and E. V. Agladze, Izv. GAO 220, 429 (2013).

    Google Scholar 

  28. I. I. Nikiforov and E. E. Kazakevich, Izv. GAO 219, 4, 245 (2009).

    Google Scholar 

  29. I. I. Nikiforov and O. V. Smirnova, Astron. Nachr. 334, 749 (2013).

    Article  ADS  Google Scholar 

  30. S. Nishiyama, T. Nagata, Sh. Sato, D. Kato, T. Nagayama, N. Kusakabe, N. Matsunaga, T. Naoi, et al., Astrophys. J. 647, 1093 (2006).

    Article  ADS  Google Scholar 

  31. J. H. Oort, Stars and Stellar Systems, Vol. 5: Galactic Structure, Ed. by A. Blaauw and M. Schmidt (Univ. Chicago Press, Chicago, London, 1965), p.455.

  32. M. Pawlowski, B. Famaey, H. Jerjen, D. Merritt, P. Kroupa, J. Dabringhausen, F. Lüghausen, D. A. Forbes, et al., Mon. Not. R. Astron. Soc. 442, 2362 (2014).

    Article  ADS  Google Scholar 

  33. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  34. R. Racine and W. E. Harris, Astron. J. 98, 1609 (1989).

    Article  ADS  Google Scholar 

  35. A. S. Rastorguev, E. D. Pavlovskaya, O. V. Durlevich, and A. A. Filippova, Astron. Lett. 20, 591 (1994).

    ADS  Google Scholar 

  36. M. J. Reid, in The Center of the Galaxy, Proceedings of the 136th IAU Sympoisum, Los Angeles, USA, July 25–29, 1988, Ed. by M. Morris (Kluwer Academic, Dordrecht, 1989), p.37.

  37. M. J. Reid, Ann. Rev. Astron. Astrophys. 31, 345 (1993).

    Article  ADS  Google Scholar 

  38. T. Sasaki and T. Ishizawa, Astron. Astrophys. 69, 381 (1978).

    ADS  Google Scholar 

  39. M. Schultheis, B. Q. Chen, B. W. Jiang, O. A. Gonzalez, R. Enokiya, Y. Fukui, K. Torii, M. Rejkuba, et al., Astron. Astrophys. 566, A120 (2014).

    Article  ADS  Google Scholar 

  40. H. Shapley, Astrophys. J. 48, 154 (1918).

    Article  ADS  Google Scholar 

  41. V. G. Surdin, Astron. Astrophys. Trans. 18, 367 (1999).

    Article  ADS  Google Scholar 

  42. A. A. Sveshnikov, Collection of Problems on Probability Theory, Mathematical Statistics and Theory of Random Functions (Lan’, St. Petersburg, 2008), p. 295 [in Russian].

    Google Scholar 

  43. G. de Vaucouleurs, Astrophys. J. 268, 451 (1983).

    Article  ADS  Google Scholar 

  44. G. de Vaucouleurs and R. Buta, Astron. J. 83, 1383 (1978).

    Article  ADS  Google Scholar 

  45. L. Woltjer, Astron. Astrophys. 42, 109 (1975).

    ADS  Google Scholar 

  46. A. E. Wright and K. A. Innanen, Astron. Astrophys. 21, 151 (1972a).

    ADS  Google Scholar 

  47. A. E. Wright and K. A. Innanen, Bull. Am. Astron. Soc. 4, 267 (1972b).

    ADS  Google Scholar 

  48. V. Yankelevich, Astron. Astrophys. Trans. 28, 347 (2014).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Nikiforov.

Additional information

Original Russian Text © I.I. Nikiforov, E.V. Agladze, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 2, pp. 97–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, I.I., Agladze, E.V. The axial zone of avoidance in the globular cluster system and the distance to the galactic center. Astron. Lett. 43, 75–105 (2017). https://doi.org/10.1134/S1063773717010029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717010029

Keywords

Navigation