Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Values of twisted Barnes zeta functions at negative integers

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study analytical and arithmetical properties of the twisted zeta function \(\Gamma (s)^{ - 1} \int_0^\infty {e^{ - xt} t^{s - 1} } \prod\nolimits_{j = 1}^N {\frac{{a_j t - \log (w^a j)}} {{1 - w^{a_j } e^{a_j t} }}dt} \), where ℜ(s) > N, ℜ(x) > 0, w ∈ ℂ\{0}, N ∈ ℤ, and a 1, …, a N have positive real parts. These functions have many interesting properties. We prove a collection of fundamental identities satisfied by zeta functions of this kind. For instance, special values of these zeta functions are related to twisted Barnes numbers and polynomials. This gives us a new elementary approach to new and known results concerning the Barnes zeta functions. In particular, we derive some well-known results on the Hurwitz zeta functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Amice, “Intégration p-adique, selon A. Volkenborn,” Séminaire Delange-Pisot-Poitou. Théorie des Nombres 13(2) (1971–1972), exp. G4, G1-G9.

    Google Scholar 

  2. W. Barnes, “On the Theory of the Multiple Gamma Function,” Trans. Cambridge. Philos. Soc. 19, 374–425 (1904).

    Google Scholar 

  3. A. Bayad, “Arithmetical Properties of Elliptic Bernoulli and Euler Numbers,” Int. J. of Algebra 4(8), 353–372 (2010).

    MathSciNet  MATH  Google Scholar 

  4. L. Carlitz, “The Multiplication Formulas for the Bernoulli and Euler Polynomials,” Math. Mag. 27, 59–64 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Carlitz, “A Note on Bernoulli Numbers and Polynomials of Higher Order,” Proc. Amer. Math. Soc. 3, 608–613 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Carlitz, “Bernoulli Numbers”, Fibonacci-Quart. 6(3), 71–85 (1968).

    MathSciNet  Google Scholar 

  7. E. Friedman and S. Ruijsenaars, “Shintani-Rnes Zeta and Gamma Functions,” Adv. Math. 187(2), 362–395 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Guillera and J. Sondow, “Double Integrals and Infinite Products for Some Classical Constants via Analytic Continuations of Lerch’s Transcendent,” Ramanujan J. 16, 247–270 (2008). arXiv:math/0506319v3 [math.NT].

    Article  MathSciNet  MATH  Google Scholar 

  9. M.-S. Kim and J.-W. Son, “Analytic Properties of the q-Volkenborn Integral on the Ring of p-Adic Integers,” Bull. Korean Math. Soc. 44(1), 1–12 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Kim, “An Analogue of Bernoulli Numbers and Their Congruences,” Rep. Fac. Sci. Engrg. Saga Univ. Math. 22(2), 21–26 (1994).

    MathSciNet  MATH  Google Scholar 

  11. T. Kim, “Sums of Products of q-Bernoulli Numbers,” Arch. Math. 76, 190–195 (2001).

    Article  MATH  Google Scholar 

  12. T. Kim, “q-Volkenborn Integration,” Russ. J. Math Phys. 19, 288–299 (2002).

    Google Scholar 

  13. T. Kim, “A New Approach to q-Zeta Function,” Adv. Stud. Contemp. Math. 11(2), 157–162 (2005).

    MathSciNet  MATH  Google Scholar 

  14. T. Kim, “Symmetry p-Adic Invariant Integral on Z p For Bernoulli and Euler Polynomials,” J. Difference Equ. Appl. 14(12), 1267–1277 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Kim, S-H. Rim, Y. Simsek, and D. Kim, “On the Analogs of Bernoulli and Euler Numbers, Related Identities and Zeta L-Functions,” J. Korean Math. Soc. 45NT-2, 435–453 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Kim, L. C. Jang, S.-H. Rim, and H. K. Pak, “On the Twisted q-Zeta Functions and q-Bernoulli Polynomials,” Far East J. Appl. Math. 13(1), 13–21 (2003).

    MathSciNet  MATH  Google Scholar 

  17. Q.-M. Luo, “The Multiplication Formula for the Apostol-Bernoulli and Apostol-Euler Polynomials of Higher Order,” Integral Transforms Spec. Funct. 20(5), 377–391 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. Q.-M. Luo and H. M. Srivastava, “Some Relationships between the Apostol-Bernoulli and Apostol-Euler Polynomials,” Comput. Math. Appl. 51(3–4), 631–642 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. N. M. Ruijsenaars, “On Barnes’ Multiple Zeta and Gamma Functions,” Adv. Math. 156, 107–132 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis (Cambridge Univ Press, 1984).

    MATH  Google Scholar 

  21. Y. Simsek, “Twisted (h,q)-Bernoulli Numbers and Polynomials Related to Twisted (h, q)-Zeta Function and L-Function,” J. Math. Anal. Appl. 324(2), 790–804 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Simsek, V. Kurt, and D. Kim, “New Approach to the Complete Sum of Products of the Twisted (h, q)-Bernoulli Numbers and Polynomials,” J. Nonlinear Math. Phys. 14(1), 44–56 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. H. M. Srivastava, T. Kim, and Y. Simsek, “q-Bernoulli Numbers and Polynomials Associated with Multiple q-Zeta Functions and Basic L-Series,” Russ. J. Math Phys., 12(2), 241–268 (2005).

    MathSciNet  MATH  Google Scholar 

  24. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions (Kluwer Acedemic Publishers, Dordrecht, Boston and London, 2001).

    Book  MATH  Google Scholar 

  25. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2ed. (Oxford, 1986).

    MATH  Google Scholar 

  26. L. Vepstas, The Gauss-Kuzmin-Wirsing operator, Preprint.

  27. A. Volkenborn, “On Generalized p-Adic Integration,” Mém. Soc. Math. Fr. 39–40, 375–384 (1974).

    MathSciNet  Google Scholar 

  28. E. T. Whittaker and G. N. Watson, Course in Modern Analysis, 4th ed. (Cambridge, England: Cambridge University Press, 1990), pp. 263–281.

    Google Scholar 

  29. J. R. Wilton, “A Note on the Coefficients in the Expansion of ζ(s, x) in Powers of s − 1,” Quart. J. Pure Appl. Math. 50, 329–332 (1927).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bayad.

Additional information

This work was supported by Akdeniz University Scientific Research Projects Unit and Univeristé Val d’Essonne Scientific Research Programs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayad, A., Simsek, Y. Values of twisted Barnes zeta functions at negative integers. Russ. J. Math. Phys. 20, 129–137 (2013). https://doi.org/10.1134/S1061920813020015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920813020015

Keywords

Navigation